Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14003 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2014.14003 | |
Published online | 23 January 2014 |
- C. J. Raymond, M. R. Murnane, S. L. Prins, S. Sohail, H. Naqvi, J. R. McNeil, and J. W. Hosch, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- M.-A. Henn, R. Model, M. Bär, M. Wurm, B. Bodermann, A. Rathsfeld, and H. Gross, “On numerical reconstructions of lithographic masks in DUV scatterometry,” Proc. SPIE 7390, 73900Q (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. Perlich, F. M. Kamm, J. Rau, F. Scholze, and G. Ulm, “Characterization of extreme ultraviolet masks by extreme ultraviolet scatterometry,” J. Vac. Sci. Technol. B 22, 3059 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- F. Scholze, and C. Laubis, “Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks,” in Proceedings to Mask and Lithography Conference, 1–9 (EMLC, Dresden, 2008). [Google Scholar]
- F. Scholze, C. Laubis, U. Dersch, J. Pomplun, S. Burger, and F. Schmidt, “The influence of line edge roughness and CD uniformity on EUV scatterometry for CD characterization of EUV masks,” Proc. SPIE 6617, 66171A (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates,” Meas. Sci. Technol. 20, 105102 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- H. Patrick, T. Germer, R. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009). [NASA ADS] [CrossRef] [Google Scholar]
- A. Kato, and F. Scholze, “Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Optics 49(31), 6102–6110 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- H. Gross, M-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, “Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Optics 51, 7384–7394 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro-Nanolith. Mem. 10(4), 040501 (2011). [Google Scholar]
- C. A. Mack, “Generating random rough edges, surfaces, and volumes,” Appl. Optics 52, 1472–1480 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Diffraction of gratings with rough edges,” Opt. Express 16, 19757–19769 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- T. Schuster, S. Rafler, V. F. Paz, F. Frenner, and W. Osten, “Field-stitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009). [CrossRef] [Google Scholar]
- M.-A. Henn, H. Gross, F. Scholze, M. Wurm, C. Elster, and M. Bär, “A maximum likelihood approach to the inverse problem of scatterometry,” Opt. Express 20(12), 12771–12786 (2012). [CrossRef] [Google Scholar]
- M-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Greenwood Village, 2005). [Google Scholar]
- O. K. Ersoy, Diffraction, Fourier Optics, and Imaging (Wiley-Interscience, New York, 2006). [Google Scholar]
- D. Voelz, Computational Fourier Optics (SPIE Press, Bellingham, 2011). [Google Scholar]
- D. C. Champeney, Fourier transforms and their physical applications (Academic Press, London/New York, 1973). [Google Scholar]
- A. Tarantola, Inverse problem theory (Elsevier, Amsterdam, 1987). [Google Scholar]
- R.M. Al-Assaad, and D. M. Byrne, “Error analysis in inverse scatterometry I. Modeling,” J. Opt. Soc. Am. A 24(2), 326–338 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M-A. Henn, H. Gross, S. Heidenreich, F. Scholze, C. Elster, and M. Bär, “Improved reconstruction of Critical Dimensions in Extreme Ultraviolet Scatterometry by Modeling Systematic Errors,” Meas. Sci. Technol., (2014), at press. [Google Scholar]
- G. Dai, K. Hahm, F. Scholze, M.-A. Henn, H. Gross, J. Fluegge, and H. Bosse, “Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and Tilting-AFM,” Meas. Sci. Technol., (2014), at press. [Google Scholar]
- G. Dai, W. Hässler-Grohne, and D. Hüser, “New developments at Physikalisch-Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith. Mem. 11(1), 011004 (2012). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.