Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14002
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2014.14002
Published online 15 January 2014
  1. N. de Vries, and R. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refr. Surg. 39, 268–278 (2013). [CrossRef] [Google Scholar]
  2. J. M. Artigas, J. L. Menezo, C. Peris, A. Felipe, and M. Díaz-Llopis, “Image quality with multifocal intraocular lenses and the effect of pupil size: Comparison of refractive and hybrid refractive-diffractive designs,” J Cataract Refr. Surg. 33, 2111–2117 (2007). [CrossRef] [Google Scholar]
  3. W. A. Maxwell, S. S. Lane, and F. Zhou, “Performance of presbyopia correcting intraocular lenses in distance optical bench tests,” J. Cataract Refr. Surg. 35, 166–171 (2009). [CrossRef] [Google Scholar]
  4. J. L. Alió, B. Elkady, D. Ortiz, and G. Bernabeu, “Clinical outcomes and intraocular optical quality of a diffractive multifocal intraocular lens with asymmetrical light distribution,” J. Cataract Refr. Surg. 34, 942–948 (2008). [CrossRef] [Google Scholar]
  5. J. F. Blaylock, Z. Si, and C. Vickers, “Visual and refractive status at different focal distances after implantation of the ReSTOR multifocal intraocular lens,” J. Cataract Refr. Surg. 32, 1464–1473 (2006). [CrossRef] [Google Scholar]
  6. J. C. Alfonso, L. Fernández-Vega, BM. Begoña, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J Cataract. Refr. Surg. 33, 1235–1243 (2007). [CrossRef] [Google Scholar]
  7. K. Petermeier, and P. Szurman, “Subjective and objective outcome following implantation of the apodized diffractive AcrySof ReSTOR,” Ophthalmology 104, 406–408 (2007). [Google Scholar]
  8. G. J. Swanson, “Diffractive trifocal intraocular lens design,” U.S. Patent 5,344,447 (1994). [Google Scholar]
  9. A. Vorkresenkaya, N. Pozdeyeva, N. Pashtaev, Y. Batkov, V. Treushnicov, and V. Cherednik, “Initial results of trifocal diffractive IOL implantation,” Graef. Arch. Clin. Exp. 248, 1299–1306 (2010). [CrossRef] [Google Scholar]
  10. A. L. Cohen, “Diffraction IOL with micromodulation,” U.S. Patent 0224138 (2012). [Google Scholar]
  11. D. Gatine, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refr. Surg. 37, 2060–2067 (2011). [CrossRef] [Google Scholar]
  12. B. Cochener, J. Vryghem, P. Rozot, G. Lesieur, S. Heireman, J. A. Blanckaert, E. Van Acker, and S. Ghekiere, “Visual and refractive outcomes after implantation of a fully diffractive trifocal lens,” Clin. Exp. Ophthalmol. 6, 1421–1427 (2012). [Google Scholar]
  13. A. L. Sheppard, S. Shah, U. Bhatt, G. Bhogal, and J. S. Wolffsohn, “Visual outcomes and subjective experience after bilateral implantation of a new diffractive trifocal intraocular lens,” J. Cataract Refr. Surg. 39, 343–349 (2013). [CrossRef] [Google Scholar]
  14. J. F. Montin, “Achieving spectacle independence with the ATLISA tri 839MP,” Cataract & Refractive Surgery Today Europe, March supplement, Vol. 3, 16–19 (2012). [Google Scholar]
  15. V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refr. Surg. 37, 2053–2059 (2011). [CrossRef] [Google Scholar]
  16. D. Gatinel, and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refr. Surg. 39, 1093–1099 (2013) [CrossRef] [Google Scholar]
  17. J. Ruiz-Alcozer, D. Madrid-Costa, S. García-Lázaro, T. Ferrer-Blasco, and R. Montés-Micó, “Optical performance of two new trifocal intraocular lenses: trough-focus MTF and influence of pupil size,” Clin. Exp. Ophthalmol. doi: 10.111/ceo.12181. [Google Scholar]
  18. F. Vega, F. Alba-Bueno, and MS. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophth. Vis. Sci. 52, 5695–5710 (2011). [CrossRef] [Google Scholar]
  19. International Organization for Standardization (ISO), Ophthalmic Implants, Intraocular lenses Part 2: Optical Properties and Test Methods (ISO 11979-2, 1999). [Google Scholar]
  20. F. Vega, MS. Millán, and B. Wells, “Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35, 1539–1541 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A. 17, 1697–1702 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  22. L. Wang, E. Dai, DD. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refr. Surg. 29, 1514–1521 (2003). [CrossRef] [Google Scholar]
  23. F. Castignoles, M. Flury, and T. Lepine, “Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs,” Opt. Express 18, 5245–5256 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  24. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. T. Kohnen, OK. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: An intraindividual comparison,” Ophthalmology 116, 1697–1706 (2009). [CrossRef] [Google Scholar]
  26. S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophth. Vis. Sci. 50, 1264–1270 (2009). [CrossRef] [Google Scholar]
  27. S. Marcos, P. Rosales, L. Llorente, and I. Jimenez-Alfaro, “Change in corneal aberrations after cataract surgery with two types of aspheric intraocular lenses,” J. Cataract. Refr. Surg. 33, 217–226 (2007). [CrossRef] [Google Scholar]
  28. N. E. de Vries, L. Franssen, C. A. B. Webers, N. G. Tahzib, Y. Y. Y. Cheng, F. Hendrikse, K. F. Tjia, et al., “Intraocular straylight after implantation of the multifocal AcrySof ReSTOR SA60D3 diffractive intraocular lens,” J. Cataract. Refr. Surg. 34, 957–962 (2008). [CrossRef] [Google Scholar]
  29. M. M. Meyers, and R. E. Albrecht, “Technique to eliminate scattered light in diffractive optical elements,” U.S Patent 5,801,889. (1998). [Google Scholar]
  30. F. Alba-Bueno, F. Vega, and M. S. Millán, “Design of a test bench for intraocular lens optical characterization,” J. Phys. Conf. Ser. 274, 012105–012112 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  31. S. Norrby, P. Piers, C. Campbell, and M. Van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Optics 46, 6595–6605 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  32. S. Norrby, “Iso eye model not longer valid for assessing aspherical lenses,” J. Cataract Refr. Surg. 34, 1056–1057 (2008). [CrossRef] [Google Scholar]
  33. Z. Zalevsky “Extended depth of focus imaging: a review,” SPIE Reviews 1, 018001-1-018001-11 (2010). [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.