Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14004
Number of page(s) 13
DOI https://doi.org/10.2971/jeos.2014.14004
Published online 25 January 2014
  1. W. J. Quadakkers, J. Żurek, and M. Hänsel, “Effect of Water Vapor on High-temperature Oxidation of FeCr Alloys,” JOM 61, 44–50 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  2. H. Yin, S. L. I. Chan, W. Y. D. Yuen, and D. J. Young, “Temperature Effects on the Oxidation of Low Carbon Steel in N2-H2-H2O at 800 − 1200°C,” Oxid. Met. 77, 305–323 (2012). [Google Scholar]
  3. J. Kalivodova, D. Baxter, M. Schütze, and V. Rohr, “Gaseous corrosion of alloys and novel coatings in simulated environments for coal, waste and biomass boilers,” Mater. Corros. 56, 882–889 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  4. J. Warris, M. Suleman, F. Mahmood, and H. Ahmed, “Kinetics of the formation of cobalt disilicide at high temperature under rapid electron beam heating,” J. Mater. Sci. Lett. 13, 96–98 (1994). [CrossRef] [Google Scholar]
  5. D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387, 686–688 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  6. S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, and J. A. Salem, “Evaluation of ultra-high temperature ceramics for aeropropulsion use,” J. Eur. Ceram. Soc. 22, 2757–2767 (2002). [CrossRef] [Google Scholar]
  7. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (1st edition, Wiley-VCH, Weinheim, 2008). [Google Scholar]
  8. A. Roos, M. Bergkvist, and C. G. Ribbing, “Optical Scattering from Oxidized Metals. 1: Model Formulation and Properties,” Appl. Optics 28, 1360–1364 (1989). [CrossRef] [Google Scholar]
  9. A. Roos, M. Bergkvist, and C. G. Ribbing, “Optical Scattering from Oxidized Metals. 1: Model Formulation and Properties; Errata,” Appl. Optics 28, 3795_1 (1989). [CrossRef] [Google Scholar]
  10. M. Bergkvist, A. Roos, C. G. Ribbing, J. M. Bennett, and L. Mattson, “Optical Scattering from Oxidized Metals. 2: Model Verification for Oxidized Copper,” Appl. Optics 28, 3902–3907 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  11. T. A. Germer, “Measurement of Roughness of Two Interfaces of a Dielectric Film by Scattering Ellipsometry,” Phys. Rev. Lett. 85, 349–352 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  12. M. Karamemehdović, P. E. Hansen, and T. Wriedt, “An efficient rough-interface scattering model for embedded nano-structures,” Thin Solid Films 541, 51–56 (2013). [CrossRef] [Google Scholar]
  13. M. Auinger, D. Vogel, A. Vogel, M. Spiegel, and M. Rohwerder, “A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures,” Rev. Sci. Instr. 84, 085108 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  14. L. Niewolak, M. Malessa, S. Y. Coleman, W. J. Quadakkers, and M. Schütze, “Influence of cycling parameter variation on thermal cyclic oxidation testing of high temperature materials (COTEST),” Mater. Corros. 57, 31–42 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. Light Scattering and Nanoscale Surface Roughness, A. A. Maradudin eds., (1st edition, Springer, New York, 2007). [CrossRef] [Google Scholar]
  16. S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, “Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011). [CrossRef] [Google Scholar]
  17. T. A. Germer, “Polarized light scattering by microroughness and small defects in dielectric layers,” J. Opt. Soc. Am. A 18, 1279–1288 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  18. G. Vasan, Y. Chen, and A. Erbe, “Computation of Surface-Enhanced Infrared Absorption Spectra of Particles at a Surface through the Finite Element Method,” J. Phys. Chem. C 115, 3025–3033 (2011). [CrossRef] [Google Scholar]
  19. G. Vasan, and A. Erbe, “Incidence angle dependence of the enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations,” Phys. Chem. Chem. Phys. 14, 14702–14709 (2012). [Google Scholar]
  20. A. G. Skirtach, D. G. Kurth, and H. Möhwald, “Laser-embossing nanoparticles into a polymeric film,” Appl. Phys. Lett. 94, 093106 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  21. J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering by dielectric and metallic spheres on oxidized silicon surfaces,” Appl. Optics 43, 585–591 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  22. S.-H. Hsu, Y.-C. Chang, Y.-C. Chen, P.-K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18, 1310–1315 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  23. B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  24. E. Marx, T. R. Lettieri, and T. V. Vorburger, “Light scattering by sinusoidal surfaces: illumination windows and harmonics in standards,” Appl. Optics 34, 1269–1277 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  25. P. G. Appleyard, “Modelled infrared extinction and attenuation performance of atmospherically disseminated high aspect ratio metal nanoparticles,” J. Opt. A: Pure Appl. Opt. 9, 278–300 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  26. M. Sun, Y. Fang, Z. Yang, and H. Xu, “Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering,” Phys. Chem. Chem. Phys. 11, 9412–9419 (2009). [Google Scholar]
  27. G. Petzow, V. Carle, and U. Harnisch, Metallographic etching (2nd edition, Materials Park: ASM International, Ohio, 1999). [Google Scholar]
  28. T. C. Choy, Effective Medium Theory - Principles and Applications (Clarendon Press, Oxford, 1999). [Google Scholar]
  29. M. Born, and E. Wolf, Principles of Optics (7th edition, Cambridge University Press, Cambridge, 2002). [Google Scholar]
  30. G. R. Fowles, Introduction to Modern Optics (2nd edition, Dover Publications, New York, 1989). [Google Scholar]
  31. E. Hecht, Optics (4th edition, Addison Wesley, San Francisco, 2002). [Google Scholar]
  32. B. J. Griffiths, R. H. Middleton, and B. A. Wilkie, “Light scattering for the measurement of surface finish: a review,” Int. J. Prod. Res. 32, 2683–2694 (1994). [CrossRef] [Google Scholar]
  33. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  34. T. A. Germer, and C. C. Asmail, “Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16, 1326–1332 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  35. J. C. Stover, Optical Scattering: Measurement and Analysis (2nd edition, SPIE Press, Bellingham, 1995). [CrossRef] [Google Scholar]
  36. R. J. Dick, K. J. Heater, V. D. McGinniss, W. F. McDonald, and R. E. Russel, “Comparison of the Effectiveness of Electric IR and Other Energy Sources To Cure Powder Coatings,” J. Coating. Technol. 66, 23–38 (1994). [Google Scholar]
  37. S. Mokkapati, and C. Jagadish, “III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009). [CrossRef] [Google Scholar]
  38. J. R. Howell, R. Siegel, and M. P. Menguc, Thermal Radiation Heat Transfer (5th edition, CRC Press, Boca Raton, 2010). [CrossRef] [Google Scholar]
  39. M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977). [CrossRef] [Google Scholar]
  40. J. P. Traverse, P. Fort, H. Ganda, and R. Saporte, “Investigation of optical properties of iron, chromium, and nickel oxide based coatings,” Sol. Energ. Mat. Sol. C. 28, 195–207 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  41. D. W. Jordan, and P. Smith, Nonlinear Ordinary Differential Equations - An Introduction for Scientists and Engineers (4th edition, Oxford University Press, Oxford, 2007). [CrossRef] [Google Scholar]
  42. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2010). [Google Scholar]
  43. L. del Campo, R. B. Pérez-Saéz, X. Esquisabel, I. Fernández, and M. J. Tello, “New experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006). [CrossRef] [Google Scholar]
  44. S. G. Gopalakrishnan, P. Huczkowski, J. Pernpeintner, T. Fend, H. Hattendorf, R. Iskandar, J. Mayer, et al., “Composition modifications and heat treatment procedures for increasing the emissivity of alumina surface scales on FeCrAl alloys,” Mater. High Temp. 29, 249–256 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  45. M. Nowak, “Determination of optical constants and average thickness of inomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  46. C. Mitterer, F. Holler, F. Üstel, and D. Heim, “Application of hard coatings in aluminium die casting - soldering, erosion and thermal fatigue behaviour,” Surf. Coat. Tech. 125, 233–239 (2000). [CrossRef] [Google Scholar]
  47. R. Kingston, Optical Sources, Detectors, and Systems - Fundamentals and Applications (1st edition, Academic Press, Boston, 1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.