Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
|
|
---|---|---|
Article Number | 29 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/jeos/2025024 | |
Published online | 27 June 2025 |
- Setälä T, Shevchenko A, Kaivola M, Friberg AT, Degree of polarization for optical near fields, Phys. Rev E 66, 016615 (2002). [Google Scholar]
- Lindfors K, Setälä T, Kaivola M, Friberg AT, Degree of polarization in tightly focused optical fields, J. Opt. Soc. Am. A 22, 561 (2005). [Google Scholar]
- Luis A, Degree of polarization for three-dimensional fields as a distance between correlation matrices, Opt. Commun. 253, 10 (2005). [Google Scholar]
- Abouraddy AF, Toussaint KC, Three-dimensional polarization control in microscopy, Phys. Rev. Lett. 96, 153901 (2006). [Google Scholar]
- Cai Y, Liang Y, Lei M, Yan S, Wang S, Yu X, Li M, Dan D, Qian J, Yao B, Three-dimensional characterization of tightly focused fields for various polarization incident beams, Rev. Sci. Instrum. 88, 063106 (2017). [Google Scholar]
- Otte E, Tekce K, Lamping S, Ravoo BJ, Denz C, Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers, Nat. Commun. 10, 4308 (2019). [Google Scholar]
- Norrman A, Gil JJ, Friberg AT, Setälä T, Polarimetric nonregularity of evanescent waves, Opt. Lett. 44, 215 (2019). [Google Scholar]
- Li Y, Fu Y, Wang J, He W, Liu Z, Geometric representation of polarization for a general three-dimensional optical field, J. Optics 21, 015403 (2019). [Google Scholar]
- Chen Y, Wang F, Dong Z, Cai Y, Norrman A, Gil JJ, Friberg AT, Setälä T, Polarimetric dimension and nonregularity of tightly focused light beams, Phys. Rev. A 101, 053825 (2020). [Google Scholar]
- Sheppard CJR, Bendadi A, Le-Gratiet A, Diaspro A, Purity of three-dimensional polarization, J. Opt. Soc. Am. A 39, 6 (2022). [Google Scholar]
- Yan C, Li X, Cai Y, Chen Y, Three-dimensional polarization state and spin structure of a tightly focused radially polarized Gaussian Schell-model beam, Phys. Rev A 106, 063522 (2022). [Google Scholar]
- Li X, Zhu X, Liu L, Wang F, Cai Y, Chen Y, Generation of optical 3D unpolarized lattices in a tightly focused random beam, Opt. Lett. 48, 3829 (2023). [Google Scholar]
- Lu J, Hassan M, Courvoisier F, García-Caurel E, Brisset F, Ossikovski R, Zeng X, Poumellec B, Lancry M, 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica, APL Photonics 8, 060801 (2023). [Google Scholar]
- Wolf E, Coherence properties of partially polarized electromagnetic radiation, Nuovo Cimento 13, 1165 (1959). [Google Scholar]
- Brosseau C, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998). [Google Scholar]
- Gil JJ, Correas JM, Melero PA, Ferreira C, Generalized polarization algebra, Monog. Sem. Mat. G. Galdeano 31, 161 (2004). [Google Scholar]
- Dennis MR, Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization, J. Opt. A: Pure Appl. Opt. 6, S26 (2004). [Google Scholar]
- Brosseau C, Dogariu A, Symmetry properties and polarization descriptors for an arbitrary electromagnetic wavefield, Prog. Opt. 49, 315 (2006). [Google Scholar]
- Gil JJ, Polarimetric characterization of light and media, Eur. Phys. J. Appl. Phys. 40, 1 (2007). [Google Scholar]
- Auñón JM, Nieto-Vesperinas M, On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources, Opt. Lett. 38, 58 (2013). [Google Scholar]
- Gil JJ, Interpretation of the coherency matrix for three-dimensional polarization states, Phys. Rev A 90, 043858 (2014). [Google Scholar]
- Sheppard CJR, Jones and Stokes parameters for polarization in three dimensions, Phys. Rev. A 90, 023809 (2014). [Google Scholar]
- Gamel O, James DFV, Majorization and measures of classical polarization in three dimensions, J. Opt. Soc. Am. A 31, 1620 (2014). [Google Scholar]
- Sheppard CJR, Castello M, Diaspro A, Three-dimensional polarization algebra, J. Opt. Soc. Am. A 33, 1938 (2016). [Google Scholar]
- Norrman A, Friberg AT, Gil JJ, Setälä T, Dimensionality of random light fields, J. Eur. Opt. Soc.-Rapid Publ. 13, 36 (2017). [Google Scholar]
- Gil JJ, Norrman A, Friberg AT, Setälä T, Intensity and spin anisotropy of three-dimensional polarization states, Opt. Lett. 44, 3578 (2019). [Google Scholar]
- Gil JJ, Geometric interpretation and general classification of three-dimensional polarization states through the intrinsic Stokes parameters, Photonics 8, 315 (2021). [Google Scholar]
- Alonso MA, Geometric descriptions for the polarization for nonparaxial optical fields: a tutorial, Adv. Opt. Photon. 15, 176 (2023). [Google Scholar]
- Freund I, Optical Möbius strips in three-dimensional ellipse fields: I. Lines of circular polarization, Opt. Commun. 283, 1 (2010). [Google Scholar]
- Freund I, Optical Möbius strips in three-dimensional ellipse fields: II. Lines of linear polarization, Opt. Commun. 283, 16 (2010). [Google Scholar]
- Bauer T, Neugebauer M, Leuchs G, Banzer P, Optical polarization Möbius strips and points of purely transverse spin density, Phys. Rev. Lett. 117, 013601 (2016). [Google Scholar]
- Larocque H, Sugic D, Mortimer D, Taylor AJ, Fickler R, Boyd RW, Dennis MR, Karimi E, Reconstructing the topology of optical polarization knots, Nat. Phys. 14, 1079 (2018). [Google Scholar]
- Peng L, Dongjing W, Sheng L, Yi Z, Xuyue G, Shuxia Q, Yu L, Jianlin Z, Three-dimensional modulations on the states of polarization of light fields, Chin. Phys. B 27, 114201 (2018). [Google Scholar]
- Bliokh KY, Alonso MA, Dennis MR, Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects, Rep. Prog. Phys. 82, 122401 (2019). [Google Scholar]
- Khonina SN, Porfirev AP, Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution, Nanophotonics 11, 697 (2022). [Google Scholar]
- Martínez-Herrero R, Maluenda D, Aviñoá M, Carnicer A, Juvells I, Sanz AS, Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach, Photonic Res. 11, 1326 (2023). [Google Scholar]
- Li Y, Ansari MA, Ahmed H, Wang R, Wang G, Chen X, Longitudinally variable 3D optical polarization structures, Sci. Adv. 9, eadj6675 (2023). [Google Scholar]
- Gil JJ, Ossikovski R, Polarized Light and the Mueller Matrix Approach, 2nd edn (CRC Press, Boca Raton, 2022). [Google Scholar]
- Gil JJ, Norrman A, Friberg AT, Setälä T, Nonregularity of three-dimensional polarization states, Opt. Lett. 43, 4611 (2018). [Google Scholar]
- Gil JJ, Norrman A, Friberg AT, Setälä T, Information structure of a polarization state: the concept of metaspin, J. Opt. Soc. Am. A 41, 1435 (2024). [Google Scholar]
- Gabor D, Theory of communication, J. Inst. Elect. Eng. 93, 429 (1946). [Google Scholar]
- Mandel L, Wolf E, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [Google Scholar]
- Gil JJ, San José I, Norrman A, Friberg AT, Setälä T, Sets of orthogonal three-dimensional polarization states and their physical interpretation, Phys. Rev. A 100, 033824 (2019). [Google Scholar]
- Gil JJ, Friberg AT, Setälä T, San José I, Structure of polarimetric purity of three-dimensional polarization states, Phys. Rev. A 95, 053856 (2017). [Google Scholar]
- Azzam RMA, Three-dimensional polarization states of monochromatic light fields, J. Opt. Soc. Am. A 28, 2279(2011). [Google Scholar]
- Gil JJ, Intrinsic Stokes parameters for 2D and 3D polarization states, J. Eur. Opt. Soc. Rapid Publ. 10, 15054 (2015). [Google Scholar]
- Gil JJ, Components of purity of a three-dimensional polarization state, J. Opt. Soc. Am. A 33, 40 (2016). [Google Scholar]
- Gil JJ, Norrman A, Friberg AT, Setälä T, Effect of polarimetric nonregularity on the spin of three-dimensional polarization states, New J. Phys. 23, 063059 (2021). [Google Scholar]
- Gil JJ, Norrman A, Friberg AT, Setälä T, Discriminating states of polarization, Photonics 10, 1050 (2023). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.