Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 30
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2025026
Published online 27 June 2025
  1. Cook LM, Chemical processes in glass polishing, J. Non-Cryst. Solids 120(1–3), 152–171 (1990). https://doi.org/10.1016/0022-3093(90)90200-6. [NASA ADS] [CrossRef] [Google Scholar]
  2. Evans CJ, Paul E, Dornfeld DA, Lucca DA, Byrne G, Tricard M, Klocke F, Dambon O, Mullany BA, Material removal mechanisms in lapping and polishing, CIRP Ann. 52(2), 611–633 (2003). https://doi.org/10.1016/S0007-8506(07)60207-8. [Google Scholar]
  3. Becker E, Chemisch-Mechanische Politur von optischen Glaslinsen, Dissertation, Shaker Verlag, 2011. [Google Scholar]
  4. Schneckenburger M, Machine learning Modell für die Abtragsvorhersage in der Roboter-Glaskeramik-Politur, Dissertation, Universitätsverlag Imenau, 2021. https://doi.org/10.22032/dbt.52077. [Google Scholar]
  5. Preston FW, The theory and design of plate glass polishing machine, J. Soc. Glass Technol. 11(44), 214–256 (1927). [Google Scholar]
  6. Luo J, Dornfeld DA, Integrated modeling of chemical mechanical planarization for sub-micron IC fabrication (Springer, Heidelberg, 2004). https://doi.org/10.1007/978-3-662-07928-7. [CrossRef] [Google Scholar]
  7. Pal RK, Garg H, Sarepaka RGV, Karar V, Experimental investigation of material removal and surface roughness during optical glass polishing, Mater. Manuf. Process. 31, 1613–1620 (2016). https://doi.org/10.1080/10426914.2015.1103867. [Google Scholar]
  8. Vesely L, Matousek O, Vit T, Mueller M, Contribution on the kinematics of the polishing process on a polishing machine with horizontal overarm, EPJ Web Conf 264, 01047 (2022). https://doi.org/10.1051/epjconf/202226401047. [Google Scholar]
  9. Kaller A, Elementarvorgänge im Wirkspalt beim Polieren, (Bauwesenverlag, 1980), p. 34–40. [Google Scholar]
  10. Steinhilper W, Hennerici H, Britz S, Kinematische Grundlagen ebener Mechanismen und Getriebe (Vogel Fachbuch, Würzburg, 1993). [Google Scholar]
  11. Chen ZH, Wang Y, Ouyang P, Huang J, Zhang W, A novel iteration-based controller for hybrid machine systems, Robotica 29, 317–324 (2011). https://doi.org/10.1017/S0263574710000159. [Google Scholar]
  12. Sun Y, Ge W, Zheng J, Dong D, Design and evaluation of a prosthetic knee joint using the geared five-bar mechanism, IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 1031–1038 (2015). https://doi.org/10.1109/tnsre.2015.2401042. [Google Scholar]
  13. Killinger S, Thiess H, Setting up an industrial robot for automated overarm polishing (SPIE, 2024), p. 13221. https://doi.org/10.1117/12.3033079. [Google Scholar]
  14. Veselý L, Matousek O, Vit T, Novosad J, Optimization of the polishing process on a polishing machine with horizontal overarm, EPJ Web Conf. 264, 01048 (2022). https://doi.org/10.1051/epjconf/202226401048. [Google Scholar]
  15. Chen ZH, Wang Y, Ouyang P, Huang J, Zhang W, A novel iteration-based controller for hybrid machine systems for trajectory tracking at the end-effector level, Robotica 29(2), 317–324 (2011). https://doi.org/10.1017/S0263574710000159. [Google Scholar]
  16. Zhou H, Ma S, Wang G, Deng Y, Liu Z, A hybrid control strategy for grinding and polishing robot based on adaptive impedance control. Adv. Mech. Eng. 13(3) (2021). https://doi.org/10.1177/16878140211004034 [Google Scholar]
  17. Li Z, Cheung CF, Lam KM, Lun DPK, Active compliance smart control strategy of hybrid mechanism for Bonnet Polishing. Sensors 24(2), 421 (2024). https://doi.org/10.3390/s24020421. [Google Scholar]
  18. Mohsin I, He K, Li Z., Path planning under force control in robotic polishing of the complex curved surfaces. Appl. Sci. 9(24), (2019). https://doi.org/10.3390/app9245489. [Google Scholar]
  19. Cramer E, Jaeschke L, Trimpe S, CHEQ-ing the box: safe variable impedance learning for robotic polishing. (2025). Early Access. https://arxiv.org/abs/2501.07985. [Google Scholar]
  20. Zhu S, Chen H, Wang M, Guo X, Lei Y, Jin G, Plastic solid waste identification system based on near infrared spectroscopy in combination with support vector machine, Adv. Ind. Eng. Polym. Res. 2(2), 77–81 (2019) https://doi.org/10.1016/j.aiepr.2019.04.001. [Google Scholar]
  21. Stookey SD, Catalyzed crystallization of glass, Ind. Eng. Chem. 51(7), 805–808 (1959). https://doi.org/10.1021/ie50595a022. [Google Scholar]
  22. Brueckler FM, Geschichte der Mathematik kompakt: Das Wichtigste aus Analysis, Wahrscheinlichkeitstheorie, angewandter Mathematik, Topologie und Mengenlehre, (Springer, Heidelberg, 2018). https://doi.org/10.1007/978-3-662-55574-3. [Google Scholar]
  23. Halevy A, Norvig P, Pereira F, The unreasonable effectiveness of data, IEEE 24(2), 8–12 (2009). https://doi.org/10.1109/MIS.2009.36. [Google Scholar]
  24. Banko M, Brill E, Scaling to very very large corpora for natural language disambiguation, Proceedings of the 39th Annual Meeting of the Association for Computational 39, 26–33 (2001). https://doi.org/10.3115/1073012.1073017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.