Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/jeos/2025022 | |
Published online | 27 June 2025 |
- National Research Council, Division on Engineering, Physical Sciences, National Materials, Manufacturing Board, Committee on Harnessing Light, et al., Optics and photonics: Essential technologies for our nation (National Academies Press, 2013). [Google Scholar]
- Hochberg M, Harris NC, Ding R, Zhang Y, Novack A, Xuan Z, et al., Silicon photonics: the next fabless semiconductor industry, IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013). [Google Scholar]
- Zia R, Schuller JA, Chandran A, Brongersma ML, Plasmonics: the next chip-scale technology, Mater. Today 9(7–8), 20–27 (2006). [Google Scholar]
- Tong L, Wei H, Xu H., Fundamentals of Plasmonics. Nanophotonics (Jenny Stanford Publishing, 2017), pp. 1–20. [Google Scholar]
- Ozbay E, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189–193 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- Bousbih R, Soliman M, Jafar N, Jabir M, Majdi H, Alshomrany A, et al., Generation of Surface Plasmon Polaritons (SPPs) at chiroplasma-metal interface, Plasmonics, 1–6. [Google Scholar]
- Iftikhar M, Raza A, Alkhouri A, Ibrahim S, Obaidullah A, Mahal A, et al., Numerical investigations of SPPs at chiroferrite-metal interface. Plasmonics, 1–6 (2024). [Google Scholar]
- Mi G, Van V, Characteristics of surface plasmon polaritons at a chiral–metal interface, Opt. Lett. 39(7), 2028–2031 (2014). [Google Scholar]
- Polo JA, Jr., Lakhtakia A, On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film, Proc. R. Soc A Math. Phys. Eng. Sci. 465(2101), 87–107 (2009). [Google Scholar]
- Zhang Q, Li J, Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure, Opt. Lett. 41(14), 3241–3244 (2016). [Google Scholar]
- Zhang Q, Li J, Liu X, Gelmecha DJ, Dispersion, propagation, and transverse spin of surface plasmon polaritons in a metal-chiral-metal waveguide, Appl. Phys. Lett. 110(16), (2017). [Google Scholar]
- Ebbesen TW, Genet C, Bozhevolnyi SI, Surface-plasmon circuitry, Phys. Today 61(5), 44–50 (2008). [Google Scholar]
- Mahal A, Abdulghani HH, Khamis RA, Asiri YM, Amin MA, Jabir MS, et al., Characteristics of photon–plasmon coupling in uniaxial chiral filled slab waveguide bounded by graphene layers, Plasmonics, 1–8 (2024). [Google Scholar]
- Bani-Fwaz MZ, Bousbih R, Khamis RA, Soliman MS, Jabir MS, Majdi H, et al., Graphene-Loaded Surface Plasmon Polariton (SPP) waveguide surrounded by Uniaxial Chiral (UAC) and plasma layers, Plasmonics, 1–8 (2024). [Google Scholar]
- Lu WB, Zhu W, Xu HJ, Ni ZH, Dong ZG, Cui TJ, Flexible transformation plasmonics using graphene, Opt. Exp. 21(9), 10475–10482 (2013). [Google Scholar]
- Yaqoob M, Ghaffar A, Alkanhal M, Ur Rehman S, Razzaz F, Hybrid surface plasmon polariton wave generation and modulation by Chiral-Graphene-Metal (CGM) structure, Sci. Rep. 8(1), 1–9 (2018). [Google Scholar]
- Roumi B, Abdi-Ghaleh R, Akkus H, Single-frequency into dual-frequency absorption switch based on a one-dimensional photonic crystal containing graphene and vanadium dioxide layers, Photon. Nanostruct. Fundament. Appl. 53, 101111 (2023). [Google Scholar]
- Roumi B, Abdi-Ghaleh R, Madani A, Optical phase shift changes of 2D graphene on a substrate, Eur.Phys. J. Plus 134(7), 329 (2019). [Google Scholar]
- Saeed M, Ghaffar A, Rehman SU, Naz MY, Shukrullah S, Naqvi QA, Graphene-based plasmonic waveguides: a mini review, Plasmonics 17(3), 901–911 (2022). [Google Scholar]
- Edery A, Marachevsky V, Perfect magnetic conductor Casimir piston in d+1 dimensions, Phys. Rev. D Particles, Fields, Gravitation, and Cosmology 78(2), 025021 (2008). [Google Scholar]
- Feresidis AP, Goussetis G, Wang S, Vardaxoglou JC, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas, IEEE Trans. Antennas Propag. 53(1), 209–215 (2005). [Google Scholar]
- Ghaffar A, Alkanhal MA, Propagation through chiroplasma waveguide using perfect magnetic conductor boundary conditions, Can. J. Phys. 93(12), 1460–1465 (2015). [Google Scholar]
- Liu L-l, Li Z, Gu C-Q, Ning P-P, Xu B-Z, Niu Z-Y, et al., A corrugated perfect magnetic conductor surface supporting spoof surface magnon polaritons, Opt. Exp. 22(9), 10675–10681 (2014). [Google Scholar]
- Sohn J, Kim KY, Tae H-S, Lee H, Comparative study on various artficial magnetic conductors for low-profile antenna, Prog. Electromagn. Res. 61, 27–37 (2006). [Google Scholar]
- Baqir M, Choudhury P, On the energy flux through a uniaxial chiral metamaterial made circular waveguide under PMC boundary, J. Electromagn. Waves Appl 26(16), 2165–2175 (2012). [Google Scholar]
- Umair M, Azam M, Alkanhal MA, Ghaffar A, Aladadi YT, Khan Y, Characteristics of surface plasmon polaritons in magnetized plasma film walled by two graphene layers, J. Nanoelectron. Optoelectron. 15(5), 574–579 (2020). [Google Scholar]
- Shahid MU, Ghaffar A, Alkanhal MA, Khan Y, Propagation of electromagnetic waves in graphene-wrapped cylindrical waveguides filled with magnetized plasma, Optik 244, 167566 (2021). [Google Scholar]
- Ali M, Ghaffar A, Alkanhal MA, Khan Y, Study of hybrid surface Plasmon modes in metallic circular waveguide filled with magnetized plasma, Waves Random Complex Media 32(1), 449–462 (2022). [Google Scholar]
- Azama M, Ghaffara A, Jamila Y, Bhattib H, Hybrid surface plasmon polariton (SPPs) modes between metal and anisotropic plasma interface, J. Ovonic Res. 17(6), 509–517 (2021). [Google Scholar]
- Gong J, Electromagnetic wave propagation in a chiroplasma-filled waveguide, J. Plasma Phys. 62(1), 87–94 (1999). [Google Scholar]
- Yaqoob MZ, Ghaffar A, Alkanhal M, Rehman SU, Characteristics of light–plasmon coupling on chiral–graphene interface, J. Opt. Soc. Am. B 36(1), 90–95 (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.