Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/jeos/2025005 | |
Published online | 04 March 2025 |
- Arshad M, Seadawy AR, Lu D, Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications, Superlattices Microstruct. 112, 422 (2017). https://doi.org/10.1016/j.spmi.2017.09.054. [NASA ADS] [CrossRef] [Google Scholar]
- Al-Ghafri KS, Krishnan EV, Khan S, Biswas A, Optical bullets and their modulational instability analysis, Appl. Sci. 12(18), 9221 (2022). https://doi.org/10.3390/app12189221. [CrossRef] [Google Scholar]
- Ding CQC, Zhu LQW, Triki H, Zhou Q, Four-wave mixing induced general localized waves for a coupled generalized nonlinear Schrödinger system, Phys. D Nonlinear Phenom. 464, 134191 (2024). https://doi.org/10.1016/j.physd.2024.134191. [NASA ADS] [CrossRef] [Google Scholar]
- Wang J, Shehzad K, Arshad M, Seadawy AR, Physical constructions of kink, anti-kink optical solitons and other solitary wave solutions for the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity, Opt. Quantum Electron. 56(5), 758 (2024). https://doi.org/10.1007/s11082-024-06481-w. [NASA ADS] [CrossRef] [Google Scholar]
- Shukla P, Eliasson B, Formation and dynamics of dark solitons and vortices in quantum electron plasmas, Phys. Rev. Lett. 96(24), 245001 (2006). https://doi.org/10.1103/PhysRevLett.96.245001. [NASA ADS] [CrossRef] [Google Scholar]
- Sabry R, Moslem W, Haas F, Ali S, Shukla PK, Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma, Phys. Plasmas 15(12), 122308 (2008). https://doi.org/10.1063/1.3037265. [NASA ADS] [CrossRef] [Google Scholar]
- Ali R, Zhang Z, Ahmad H, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quantum Electron. 56(5), 838 (2024). https://doi.org/10.1007/s11082-024-06370-2. [NASA ADS] [CrossRef] [Google Scholar]
- Voinescu R, Tai JQSB, Smalyukh II, Hopf solitons in helical and conical backgrounds of chiral magnetic solids, Phys. Rev. Lett. 125(5), 057201 (2020). https://doi.org/10.1103/PhysRevLett.125.057201. [NASA ADS] [CrossRef] [Google Scholar]
- Lan ZQZ, Bound-state solitons in three-wave resonant interactions, Nonlinear Dyn. 112(22), 20173 (2024). https://doi.org/10.1007/s11071-024-10121-z. [NASA ADS] [CrossRef] [Google Scholar]
- Zhong Y, Zhou Q, Abundant vortex dynamics in spin-1 Bose-Einstein condensates induced by rashba spin-orbit coupling, Chaos Solit. Fract. 188, 115590 (2024). https://doi.org/10.1016/j.chaos.2024.115590. [NASA ADS] [CrossRef] [Google Scholar]
- Liu FQY, Triki H, Zhou Q, Oscillatory nondegenerate solitons in spin–orbit coupled spin-1/2 Bose-Einstein condensates with weak raman coupling, Chaos Solit. Fract. 186, 115257 (2024). https://doi.org/10.1016/j.chaos.2024.115257. [CrossRef] [Google Scholar]
- Liu FQY, Xu SQY, Triki H, Choudhuri A, Zhou Q, Spatiotemporal modulated solitons in a quasi-one-dimensional spin-1 Bose-Einstein condensates, Chaos Solit. Fract. 183, 114947 (2024). https://doi.org/10.1016/j.chaos.2024.114947. [CrossRef] [Google Scholar]
- Zhong Y, Triki H, Zhou Q, Dynamics of ring dark solitons and the following vortices in spin-1 Bose-Einstein condensates, Chin. Phys. Lett. 41, 070501 (2024). https://doi.org/10.1088/0256-307X/41/7/070501. [NASA ADS] [CrossRef] [Google Scholar]
- Zhong Y, Triki H, Zhou Q, Bright and kink solitons of time-modulated cubic–quintic–septic–nonic nonlinear Schrödinger equation under space-time rotated PT-symmetric potentials, Nonlinear Dyn. 112(2), 1349 (2024). https://doi.org/10.1007/s11071-023-09116-z. [NASA ADS] [CrossRef] [Google Scholar]
- Liu HQT, Liu FQY, Mirzazadeh M, Zhou Q, Oscillating multi-node solitons in spin-orbit coupled spin-1 Bose-Einstein condensates, Eur. Phys. J. Plus 139(7), 652 (2024). https://doi.org/10.1140/epjp/s13360-024-05406-6. [NASA ADS] [CrossRef] [Google Scholar]
- Zhong Y, Yu K, Sun Y, Triki H, Zhou Q, Stability of solitons in bose–einstein condensates with cubic-quintic-septic nonlinearity and non-PT-symmetric complex potentials, Eur. Phys. J. Plus 139(2), 119 (2024). https://doi.org/10.1140/epjp/s13360-024-04930-9. [NASA ADS] [CrossRef] [Google Scholar]
- Mani Rajan MS, in Industrial Applications of Nanocrystals. Micro and Nano Technologies, 2022, edited by Mallakpour S, Hussain CM (Elsevier, Amsterdam), p. 3. https://doi.org/10.1016/B978-0-12-824024-3.00017-8. [CrossRef] [Google Scholar]
- Menyuk CR, Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes, Opt. Lett. 12(8), 614 (1987). https://doi.org/10.1364/OL.12.000614. [NASA ADS] [CrossRef] [Google Scholar]
- Menyuk CR, Solitons in birefringent optical fibers and polarization mode dispersion, Opt. Commun. 550, 129841 (2024). https://doi.org/10.1016/j.optcom.2023.129841. [NASA ADS] [CrossRef] [Google Scholar]
- Liu FQY, Triki H, Zhou Q, Optical nondegenerate solitons in a birefringent fiber with a 35 degree elliptical angle, Opt. Express 32(2), 2746 (2024). https://doi.org/10.1364/OE.512116. [NASA ADS] [CrossRef] [Google Scholar]
- Zaabat S, Zaabat M, Lu Z, Triki H, Zhou Q, Propagation of solitons in inhomogeneous birefringent nonlinear dispersive media, Results Phys. 54, 107144 (2023). https://doi.org/10.1016/j.rinp.2023.107144. [CrossRef] [Google Scholar]
- Fu L, Li J, Yang H, Dong H, Han X, Optical solitons in birefringent fibers with the generalized coupled space–time fractional non-linear Schrödinger equations, Front. Phys. 11, 1108505 (2023). https://doi.org/10.3389/fphy.2023.1108505. [NASA ADS] [CrossRef] [Google Scholar]
- Li Z, Fan W, Miao F, Chaotic pattern, phase portrait, sensitivity and optical soliton solutions of coupled conformable fractional fokas-lenells equation with spatio-temporal dispersion in birefringent fibers, Results Phys. 47, 106386 (2023). https://doi.org/10.1016/j.rinp.2023.106386. [CrossRef] [Google Scholar]
- Mahmood M, Chirped optical solitons in single-mode birefringent fibers, Appl. Opt. 35(34), 6844 (1996). https://doi.org/10.1364/AO.35.006844. [NASA ADS] [CrossRef] [Google Scholar]
- Triki H, Zhou Q, Liu W, Biswas A, Moraru L, Yıldırım Y, Alshehri HM, Belic MR, Chirped optical soliton propagation in birefringent fibers modeled by coupled fokas-lenells system, Chaos Solit. Fractals 155, 111751 (2022). https://doi.org/10.1016/j.chaos.2021.111751. [Google Scholar]
- Xiao Y, Zhang J, Duan H, Transmission stability of chirped bright vector quasi-solitons in birefringent fiber system with nonlinear gain, Optik 212, 164751 (2020). https://doi.org/10.1016/j.ijleo.2020.164751. [NASA ADS] [CrossRef] [Google Scholar]
- Xiao Y, Zhang J, He Q, Transmission stability of chirped dark vector quasi-solitons in birefringent fiber system with nonlinear gain, Opt. Appl. L1(1), 51 (2021). https://doi.org/10.37190/oa210104. [Google Scholar]
- Yıldırım Y, Optical solitons to sasa-satsuma model in birefringent fibers with modified simple equation approach, Optik 184, 197 (2019). https://doi.org/10.1016/j.ijleo.2019.03.022. [CrossRef] [Google Scholar]
- Raza N, Zubair A, Dipole and combo optical solitons in birefringent fibers in the presence of four-wave mixing, Commun. Theor. Phys. 71(6), 723 (2019). https://doi.org/10.1088/0253-6102/71/6/723. [NASA ADS] [CrossRef] [Google Scholar]
- González-Gaxiola O, Biswas A, Yildirim Y, Alshehri HM, Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–adomian decomposition, Ukr. J. Phys. Opt. 23(2), 68 (2022). https://doi.org/10.3116/16091833/23/2/68/2022. [CrossRef] [Google Scholar]
- Asma M, Biswas A, Ekici M, Gonzalez-Gaxiola O, Alzahrani AK, Belic MR, Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by traveling waves and adomian decomposition, Opt. Quantum Electron. 53, 1 (2021). https://doi.org/10.1007/s11082-021-02778-2. [NASA ADS] [CrossRef] [Google Scholar]
- Samir I, Badra N, Ahmed HM, Arnous AH, Solitons in birefringent fibers for cgl equation with hamiltonian perturbations and kerr law nonlinearity using modified extended direct algebraic method. Commun. Nonlinear Sci, Numer. Simul. 102, 105945 (2021). https://doi.org/10.1016/j.cnsns.2021.105945. [CrossRef] [Google Scholar]
- Rehman S, Ahmad J, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, Alex. Eng. J. 60(1), 1339 (2021). https://doi.org/10.1016/j.aej.2020.10.055. [CrossRef] [Google Scholar]
- Han T, Li Z, Yuan J, Optical solitons and single traveling wave solutions of biswas-arshed equation in birefringent fibers with the beta-time derivative, AIMS Math. 7(8), 15282 (2022). https://doi.org/10.3934/math.2022837. [CrossRef] [Google Scholar]
- Zayed EM, Alngar ME, Shohib RM, Biswas A, Triki H, Yıldırım Y, Alshomrani AS, Alshehri HM, Cubic-quartic optical solitons in birefringent fibers with Sasa-Satsuma equation, Optik 261, 169230 (2022). https://doi.org/10.1016/j.ijleo.2022.169230. [NASA ADS] [CrossRef] [Google Scholar]
- SQU Rehman, Ahmad J, Investigation of exact soliton solutions to chen–lee–liu equation in birefringent fibers and stability analysis, J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.026. [Google Scholar]
- Uddin M, Hafez M, Optical wave phenomena in birefringent fibers described by space-time fractional cubic-quartic nonlinear Schrödinger equation with the sense of beta and conformable derivative, Adv. Math. Phys. 2022(1), 7265164 (2022). https://doi.org/10.1155/2022/7265164. [CrossRef] [Google Scholar]
- Muniyappan A, Manikandan K, Seadawy AR, Parasuraman E, Dynamical characteristics and physical structure of cusp-like singular solitons in birefringent fibers, Results Phys. 56, 107241 (2024). https://doi.org/10.1016/j.rinp.2023.107241. [CrossRef] [Google Scholar]
- Triki H, Kruglov VI, Generation of solitons and periodic wave trains in birefringent optical fibers, Chaos Solit. Fractals 186, 115300 (2024). https://doi.org/10.1016/j.chaos.2024.115300. [NASA ADS] [CrossRef] [Google Scholar]
- Triki H, Kruglov VI, Propagation of m-shaped and w-shaped similaritons in birefringent tapered graded-index nonlinear fiber amplifiers, Opt. Commun. 574, 131054 (2025). https://doi.org/10.1016/j.optcom.2024.131054. [NASA ADS] [CrossRef] [Google Scholar]
- Kaup DJ, Newell AC, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19(4), 798 (1978). https://doi.org/10.1063/1.523737. [NASA ADS] [CrossRef] [Google Scholar]
- Kaup DJ, Newell AC, Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates, Phys. Rev. B 18(10), 5162 (1978). https://doi.org/10.1103/PhysRevB.18.5162. [NASA ADS] [CrossRef] [Google Scholar]
- Kudryashov NA, Lavrova SF, Traveling wave solutions of the derivative nonlinear Schrödinger hierarchy, Appl. Math. Comput. 477, 128802 (2024). https://doi.org/10.1016/j.amc.2024.128802. [Google Scholar]
- Kudryashov NA, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics 11(10), 2304 (2023). https://doi.org/10.3390/math11102304. [CrossRef] [Google Scholar]
- Biswas A, Soliton perturbation theory for alfven waves in plasmas, Phys. Plasmas 12(2), 022306 (2005). https://doi.org/10.1063/1.1848109. [NASA ADS] [CrossRef] [Google Scholar]
- Arshed S, Biswas A, Abdelaty M, Zhou Q, Moshokoa SP, Belic M, Sub pico-second chirp-free optical solitons with kaup-newell equation using a couple of strategic algorithms, Optik 172, 766 (2018). https://doi.org/10.1016/j.ijleo.2018.07.082. [CrossRef] [Google Scholar]
- Biswas A, Yıldırım Y, Yaşar E, Zhou Q, Moshokoa SP, Belic M, Sub pico-second pulses in mono-mode optical fibers with kaup–newell equation by a couple of integration schemes, Optik 167, 121 (2018). https://doi.org/10.1016/j.ijleo.2018.04.063. [CrossRef] [Google Scholar]
- Triki H, Biswas A, Zhou Q, Moshokoa SP, Belic M, Chirped envelope optical solitons for kaup–newell equation, Optik 177, 1 (2019). https://doi.org/10.1016/j.ijleo.2018.09.137. [CrossRef] [Google Scholar]
- Salas AH, El-Tantawy S, Youssef AAAQR, New solutions for chirped optical solitons related to kaup-newell equation: Application to plasma physics, Optik 218, 165203 (2020). https://doi.org/10.1016/j.ijleo.2020.165203. [NASA ADS] [CrossRef] [Google Scholar]
- Qian X, Lu D, Arshad M, Shehzad K, Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications, Chinese Physics B 30(2), 020201 (2021). https://doi.org/10.1088/1674-1056/abbbfc. [NASA ADS] [CrossRef] [Google Scholar]
- Arshad M, Seadawy AR, Sarwar A, Yasin F, Novel analytical solutions and optical soliton structures of fractional-order perturbed Kaup-Newell model and its application, J. Nonlinear Opt. Phys. Mater. 32(4), 2350032 (2023). https://doi.org/10.1142/S0218863523500327. [NASA ADS] [CrossRef] [Google Scholar]
- Yıldırım Y, Biswas A, Zhou Q, Alshomrani AS, Belic MR, Sub pico-second optical pulses in birefringent fibers for kaup–newell equation with cutting-edge integration technologies, Results Phys. 15, 102660 (2019). https://doi.org/10.1016/j.rinp.2019.102660. [CrossRef] [Google Scholar]
- Ahmed HM, Rabie WB, Ragusa MA, Optical solitons and other solutions to kaup–newell equation with jacobi elliptic function expansion method, Anal. Math. Phys. 11, 1 (2021). https://doi.org/10.1007/s13324-020-00464-2. [CrossRef] [Google Scholar]
- Mahmood A, Abbas M, Nazir T, Abdullah FA, Alzaidi AS, Emadifar H, Optical soliton solutions to the coupled kaup-newell equation in birefringent fibers, Ain Shams Eng. J. 15(7), 102757 (2024). https://doi.org/10.1016/j.asej.2024.102757. [CrossRef] [Google Scholar]
- Rehman HU, Awan AU, Abro KA, El Din EMT, Jafar S, Galal AM, A non-linear study of optical solitons for kaup-newell equation without four-wave mixing, J. King Saud Univ. Sci. 34(5), 102056 (2022). https://doi.org/10.1016/j.jksus.2022.102056. [CrossRef] [Google Scholar]
- Li Z, Dynamics and optical soliton solutions in birefringent fibers for the coupled Kaup-Newell equation via planar dynamical system analysis method, Results Phys. 51, 106690 (2023). https://doi.org/10.1016/j.rinp.2023.106690. [CrossRef] [Google Scholar]
- Ahmad J, Akram S, Noor K, Nadeem M, Bucur A, Alsayaad Y, Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber, Sci. Rep. 13(1), 10877 (2023). https://doi.org/10.1038/s41598-023-37757-y. [CrossRef] [Google Scholar]
- Podlubny I, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1999). [Google Scholar]
- Khalil R, Al Horani M, Yousef A, Sababheh M, A new definition of fractional derivative, Journal of computational and applied mathematics 264, 65 (2014). https://doi.org/10.1016/j.cam.2014.01.002. [CrossRef] [Google Scholar]
- Al-Ghafri KS, Soliton behaviours for the conformable space-time fractional complex Ginzburg–Landau equation in optical fibers, Symmetry 12(2), 219 (2020). https://doi.org/10.3390/sym12020219. [NASA ADS] [CrossRef] [Google Scholar]
- Kudryashov NA, Kutukov AA, Nifontov DR, Analytical solutions and conservation laws of the generalized nonlinear Schrödinger equation with anti-cubic and cubic-quintic-septic nonlinearities, Opt. Quantum Electron. 56(7), 1 (2024). https://doi.org/10.1007/s11082-024-07092-1. [NASA ADS] [CrossRef] [Google Scholar]
- Kutukov AA, Kudryashov NA, Analytical solutions of the generalized kaup–newell equation, Optik 293, 171437 (2023). https://doi.org/10.1016/j.ijleo.2023.171437. [NASA ADS] [CrossRef] [Google Scholar]
- Kudryashov NA, Lavrova SF, Painlevé analysis of the traveling wave reduction of the third-order derivative nonlinear Schrödinger equation, Mathematics 12(11), 1632 (2024). https://doi.org/10.3390/math12111632. [CrossRef] [Google Scholar]
- Kudryashov NA, Painlevé analysis of the resonant third-order nonlinear Schrödinger equation, Appl. Math. Lett. 158, 109232 (2024). https://doi.org/10.1016/j.aml.2024.109232. [CrossRef] [Google Scholar]
- Taogetusang S, The jacobi elliptic function-like exact solutions to two kinds of kdv equations with variable coefficients and kdv equation with forcible term, Chin. Phys. 15(12), 2809 (2006). https://doi.org/10.1088/1009-1963/15/12/008. [CrossRef] [Google Scholar]
- Yomba E, The extended fan’s sub-equation method and its application to KdV–MKdV, BKK and variant boussinesq equations, Phys. Lett. A 336(6), 463 (2005). https://doi.org/10.1016/j.physleta.2005.01.027. [NASA ADS] [CrossRef] [Google Scholar]
- Okposo NI, Raghavendar K, Khan N, Gómez-Agullar J, Jonathan AM, New exact optical solutions for the Lakshmanan-Porsezian–Daniel equation with parabolic law nonlinearity using the ϕ6-expansion technique, Nonlinear Dyn. 113, 4775 (2024). https://doi.org/10.1007/s11071-024-10430-3. [Google Scholar]
- Al-Ghafri K, Krishnan E, Bekir A, Chiral solitons with W-shaped and other profiles in (1+ 2) dimensions, Eur. Phys. J. Plus 137(1), 111 (2022). https://doi.org/10.1140/epjp/s13360-022-02355-w. [NASA ADS] [CrossRef] [Google Scholar]
- Al-Ghafri KS, Biswas A, Alshomrani AS, Chirped gray and singular optical solitons with generalized quadratic-cubic law of self-phase modulation and nonlinear chromatic dispersion, J. Opt. (India) 1, 1 (2024). https://doi.org/10.1007/s12596-024-02005-7. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.