Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 10
Number of page(s) 15
DOI https://doi.org/10.1051/jeos/2025006
Published online 20 February 2025
  1. Kamiya K, Negishi K, Recent advances in refractive surgery, Front. Med. 10, 1270240 (2023). [CrossRef] [Google Scholar]
  2. Ang M, Gatinel D, Reinstein DZ, Mertens E, Alió Del Barrio JL, Alió JL, Refractive surgery beyond 2020, Eye 35, 362 (2021) [CrossRef] [Google Scholar]
  3. Kymionis GD, Kankariya VP, Plaka AD, Reinstein DZ, Femtosecond laser technology in corneal refractive surgery: a review, J. Refract. Surg. 28, 912 (2012). [CrossRef] [Google Scholar]
  4. Moussa S, et al., Femtosecond laser in refractive corneal surgery, Photochem. Photobiol. Sci. 18, 1669 (2019). [NASA ADS] [CrossRef] [Google Scholar]
  5. Soong HK, Malta JB, Femtosecond lasers in ophthalmology, Am. J. Ophthalmol. 147, 189 (2009). [CrossRef] [Google Scholar]
  6. Han SB, Liu Y-C, Mohamed-Noriega K, Mehta JS, Application of femtosecond laser in anterior segment surgery, J. Ophthalmol. 2020, 8263408 (2020). [Google Scholar]
  7. Steinberg J, Mehlan J, Mudarisov B, Katz T, Frings A, Druchkiv V, Linke SJ, Safety and precision of two different flap-morphologies created during low energy femtosecond laser-assisted lasik, J. Ophthalmic Vis. Res. 18, 3 (2023). [CrossRef] [Google Scholar]
  8. Gabric I, Bohac M, Gabric K, Arba Mosquera S, First European results of a new refractive lenticular extraction procedure – SmartSight by SCHWIND eye-tech-solutions, Eye 37, 3768 (2023). [CrossRef] [Google Scholar]
  9. Pradhan KR, Mosquera SA, Twelve-month outcomes of a new refractive lenticular extraction procedure, J. Optom. 16, 30 (2023). [CrossRef] [Google Scholar]
  10. Sekundo W, Reinstein DZ, Blum M, Improved lenticule shape for hyperopic femtosecond lenticule extraction (ReLEx® FLEx): a pilot study, Lasers Med. Sci. 31, 659 (2016). [CrossRef] [Google Scholar]
  11. Wang B, Naidu RK, Chu R, Dai J, Qu X, Zhou H, Dry eye disease following refractive surgery: a 12‐month follow‐up of SMILE versus FS‐LASIK in high myopia, J. Ophthalmol. 2015, 132417 (2015). [Google Scholar]
  12. Zhang M, Chong I, Chen X, Yang J, Cheng L, Yan Z, Corneal epithelial ingrowth after small incision lenticule extraction surgery: Insights from a case series and mechanistic studies, MedComm-Futur. Med. 3, e99 (2024). [CrossRef] [Google Scholar]
  13. Zhang Y-L, Liu L, Cui C-X, Hu M, Li Z-N, Cao L-J, Jing X-H, Mu G-Y, Comparative study of visual acuity and aberrations after intralase femtosecond LASIK: small corneal flap versus big corneal flap, Int. J. Ophthalmol. 6, 641 (2013). [Google Scholar]
  14. Galvis V, et al., Risk factors and visual results in cases of LASIK flap repositioning due to folds or dislocation: case series and literature review, Int. Ophthalmol. 34, 19 (2014). [CrossRef] [Google Scholar]
  15. Lwowski C, Voigt A, Van Keer K, Kohnen T, Corneal lenticule creation using a new solid-state femtosecond laser measured by spectral domain OCT in a porcine eye model, Transl. Vis. Sci. Technol. 11, 20 (2022). [CrossRef] [Google Scholar]
  16. Latz C, Asshauer T, Rathjen C, Mirshahi A, Femtosecond-laser assisted surgery of the eye: overview and impact of the low-energy concept, Micromachines 12, 122 (2021). [CrossRef] [Google Scholar]
  17. Heisterkamp A, Mamom T, Kermani O, Drommer W, Welling H, Ertmer W, Lubatschowski H, Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye, Graefes Arch. Clin. Exp. Ophthalmol. 241, 511 (2003). [CrossRef] [Google Scholar]
  18. Reinstein DZ, Archer TJ, Gobbe M, Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes, Eye Vision 1, 1 (2014). [CrossRef] [Google Scholar]
  19. Ang M, Chaurasia SS, Angunawela RI, Poh R, Riau A, Tan D, Mehta JS, Femtosecond lenticule extraction (FLEx): clinical results, interface evaluation, and intraocular pressure variation, Invest. Ophthalmol. Vis. Sci. 53, 1414 (2012). [CrossRef] [Google Scholar]
  20. Sekundo W, Gertnere J, Reinstein DZ, New developments in the lenticule extraction procedure, Touch Ophthalmol. 14, 58 (2020). [Google Scholar]
  21. Drexler W, Fujimoto JG, Optical Coherence Tomography: Technology and Applications, 2nd edn. (Springer, Cham, 2015). [CrossRef] [Google Scholar]
  22. Fujimoto J, Swanson E, The development, commercialization, and impact of optical coherence tomography, Invest. Ophthalmol. Vis. Sci. 57, OCT1 (2016). [CrossRef] [Google Scholar]
  23. Varghese M, Varghese S, Preethi S, Revolutionizing medical imaging: a comprehensive review of optical coherence tomography (OCT), J. Opt. 1 (2024) https://doi.org/10.1007/s12596-024-01765-6. [Google Scholar]
  24. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA, Optical coherence tomography: a review of clinical development from bench to bedside, J. Biomed. Opt. 12, 051403 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. Drexler W, Fujimoto JG, State-of-the-art retinal optical coherence tomography, Prog. Retin. Eye Res. 27, 45 (2008). [CrossRef] [Google Scholar]
  26. Doors M, Berendschot TT, de Brabander J, Webers CA, Nuijts RM, Value of optical coherence tomography for anterior segment surgery, J. Cataract Refract. Surg. 36, 1213 (2010). [Google Scholar]
  27. Zeppieri M, Marsili S, Enaholo ES, Shuaibu AO, Uwagboe N, Salati C, Spadea L, Musa M, Optical coherence tomography (OCT): a brief look at the uses and technological evolution of ophthalmology, Medicina 59, 2114 (2023). [CrossRef] [Google Scholar]
  28. Steiner P, Ebneter A, Berger LE, Zinkernagel M, Považay B, Meier C, Kowal JH, Framme C, Brinkmann R, Wolf S, Sznitman R, Time-resolved ultra-high resolution optical coherence tomography for real-time monitoring of selective retina therapy, Invest. Ophthalmol. Vis. Sci. 56, 6654 (2015). [CrossRef] [Google Scholar]
  29. Bansal A, Lee WW, Felfeli T, Muni RH, Real-time in vivo assessment of retinal reattachment in humans using swept-source optical coherence tomography, Am. J. Ophthalmol. 227, 265 (2021). [CrossRef] [Google Scholar]
  30. Li Y, Zhang W, Nguyen VP, Rosen R, Wang X, Xia X, Paulus YM, Real-time OCT guidance and multimodal imaging monitoring of subretinal injection induced choroidal neovascularization in rabbit eyes, Experimental Eye Res. 186, 107714 (2019). [CrossRef] [Google Scholar]
  31. Mazlin V, et al., Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT, Nat. Commun. 11, 1868 (2020). [CrossRef] [Google Scholar]
  32. Israelsen NM, et al., Real-time high-resolution mid-infrared optical coherence tomography, Light Sci. Appl. 8, 11 (2019). [NASA ADS] [CrossRef] [Google Scholar]
  33. Salaroli CHR, Li Y, Huang D, High-resolution optical coherence tomography visualization of LASIK flap displacement, J. Cataract Refract. Surg. 35, 1640 (2009). [Google Scholar]
  34. Alió JL, Barrio JLA, Atlas of Anterior Segment Optical Coherence Tomography (Springer International Publishing, London,2020). [Google Scholar]
  35. Chong YJ, Azzopardi M, Hussain G, Recchioni A, Gandhewar J, Loizou C, Giachos I, Barua A, Ting DSJ, Clinical applications of anterior segment optical coherence tomography: an updated review, Diagnostics 14, 122 (2024). [CrossRef] [Google Scholar]
  36. Adler DC, Ko TH, Fujimoto JG, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter, Opt. Lett. 29, 2878 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  37. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV, Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach, IEEE Trans. Med. Imaging 30, 484 (2010). [Google Scholar]
  38. Li M, Idoughi R, Choudhury B, Heidrich W, Statistical model for OCT image denoising, Biomed. Opt. Express 8, 3903 (2017). [CrossRef] [Google Scholar]
  39. Huang Y, Lu Z, Shao Z, Ran M, Zhou J, Fang L, Zhang Y, Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network, Opt. Express 27, 12289 (2019). [CrossRef] [Google Scholar]
  40. Wang X, Yu X, Liu X, Chen S, Chen S, Wang N, Liu L, A two-step iteration mechanism for speckle reduction in optical coherence tomography, Biomed. Signal Process. Control 43, 86 (2018). [CrossRef] [Google Scholar]
  41. Cannon TM, Bouma BE, Uribe-Patarroyo N, in Proceedings of the SPIE PC11948, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI (2022), p. PC1194815. https://doi.org/10.1117/12.2613074. [Google Scholar]
  42. Drexler W, Fujimoto JG, in Optical coherence tomography: technology and applications, edited by W Drexler, JG Fujimoto (Springer International Publishing, Cham, 2015), p. 1685. [CrossRef] [Google Scholar]
  43. Li Y, Shekhar R, Huang D, in Medical Imaging 2002: Image Processing, edited by M. Sonka, J. Michael Fitzpatrick, vol. 4684 (International Society for Optics and Photonics, SPIE, 2002), p. 167. [CrossRef] [Google Scholar]
  44. Horritt MS, A statistical active contour model for SAR image segmentation, Image Vis. Comput. 17, 213 (1999). [CrossRef] [Google Scholar]
  45. Park HW, Schoepflin T, Kim Y, Active contour model with gradient directional information: directional snake, IEEE Trans. Circuits Syst. Video Technol. 11, 252 (2001). [Google Scholar]
  46. Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A, A geometric snake model for segmentation of medical imagery, IEEE Trans. Med. Imag. 16, 199 (1997). [Google Scholar]
  47. Thorlabs Inc., GAN111 Ganymede OCT Base Unit with LK4-BB Lens Kit. Available at https://www.thorlabs.com/thorproduct.cfm?partnumber=GAN111 (accessed: 2024-11-19). [Google Scholar]
  48. Zuberbuhler B, Tuft S, Gartry D, Spokes D, in Corneal surgery, edited by B Zuberbuhler, S Tuft, D Gartry, D Spokes (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), p. 135. [CrossRef] [Google Scholar]
  49. Kehrer T, Arba Mosquera S, A simple cornea deformation model, Adv. Opt. Technol. 10, 433 (2021). [NASA ADS] [CrossRef] [Google Scholar]
  50. Ortiz S, Siedlecki D, Grulkowski I, Remon L, Pascual D, Wojtkowski M, Marcos S, Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging, Opt. Express 18, 2782 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  51. Podoleanu A, Charalambous I, Plesea L, Dogariu A, Rosen R, Correction of distortions in optical coherence tomography imaging of the eye, Phys. Med. Biol. 49, 1277 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  52. Huang K, Zhu H, Image noise removal method based on improved nonlocal mean algorithm, Complexity 2021, 5578788 (2021). [CrossRef] [Google Scholar]
  53. Liu H, in Proceedings of the. SPIE 12707, International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2023), June (2023), p. 127070G. [Google Scholar]
  54. Goyal B, Dogra A, Agrawal S, Sohi BS, Sharma A, Image denoising review: from classical to state-of-the-art approaches, Inf. Fusion 55, 220 (2020). [CrossRef] [Google Scholar]
  55. Maronna RA, Douglas Martin R, Yohai VJ, Robust Statistics: Theory and Methods (Wiley, Hoboken, NJ, 2006). [CrossRef] [Google Scholar]
  56. Sra S, Nowozin S, Wright SJ, Optimization for Machine Learning (MIT Press, Cambridge, MA, 2012). [Google Scholar]
  57. Zibulevsky M, Elad M, L1–l2 optimization in signal and image processing, IEEE Signal Proces. Mag. 27, 76 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  58. Dhawan AP, Medical Image Analysis: Methods and Applications (Wiley, Hoboken, NJ, 2003). [Google Scholar]
  59. Gupta SK, Gupta AK, A survey of medical image edge detection techniques, Int. J. Comput. Appl. 71, 17 (2013). [NASA ADS] [Google Scholar]
  60. Szeliski R, Computer Vision: Algorithms and Applications (Springer, London, 2010). [Google Scholar]
  61. SciPy Community, SciPy: Scientific library for python, 2020. Version 1.6.2, (accessed July 2024). [Google Scholar]
  62. Fedorov V, Gelfand S, Bayesian Optimization: Theory and Practice (Springer, Cham, 2021). [Google Scholar]
  63. Garnett R, Bayesian Optimization (Cambridge University Press, Cambridge, 2023). [CrossRef] [Google Scholar]
  64. Nachtigall PG, Soares GG, Bayesian Optimization and Data Science: Theory, Algorithms, and Applications (Springer, Cham, 2022). [Google Scholar]
  65. Rasmussen CE, Williams CKI, Gaussian Processes for Machine Learning (The MIT Press, 2006, Cambridge, MA). [Google Scholar]
  66. Fang L, The influence of the aspheric profiles for transition zone on optical performance of human eye after conventional ablation, J. Eur. Opt. Soc. Rapid Publ. 9, 14060 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  67. Zaheer R, Shaziya H, in 2019 Third International Conference on Inventive Systems and Control (ICISC) (2019), p. 536. [Google Scholar]
  68. Mehrjoo M, Khamar P, Darzi S, Verma S, Shetty R, Arba Mosquera S, Automated characterization of intrastromal corneal cuts induced by two femtosecond laser systems using oct imaging, Photonics 11, 1123 (2024). [NASA ADS] [CrossRef] [Google Scholar]
  69. Mehrjoo M, Gatinel D, Malet J, Arba Mosquera S, A closed-form analytical conversion between Zernike and Gatinel-Malet basis polynomials to present relevant aberrations in ophthalmology and refractive surgery, Photonics 11 (9), 883 (2024). [NASA ADS] [CrossRef] [Google Scholar]
  70. Dice LR, Measures of the amount of ecologic association between species, Ecology 26, 297 (1945). [CrossRef] [Google Scholar]
  71. Han H, Deng H, Dong Q, Gu X, Zhang T, Wang Y, An advanced Otsu method integrated with edge detection and decision tree for crack detection in highway transportation infrastructure, Adv. Mater. Sci. Eng. 2021, 9205509 (2021). [CrossRef] [Google Scholar]
  72. Wang Y, Zhao K, Jin Y, Niu Y, Zuo T, Changes of higher order aberration with various pupil sizes in the myopic eye, J. Cataract Refract. Surg. 19, S270 (2003). [Google Scholar]
  73. Morris JS, Stickle JW, Grid search methods in multivariate optimization, J. Optim. Theory Appl. 75, 31 (1992). [Google Scholar]
  74. Vestri G, Versaci F, Savini G, CSO MS-39: Principles and Applications. Essentials in Ophthalmology (Springer, Cham, 2024). [Google Scholar]
  75. Dai GM, Validity of scaling Zernike coefficients to a larger diameter for refractive surgery, J. Refract. Surg. 27, 837 (2011). [CrossRef] [Google Scholar]
  76. Gatinel D, Malet J, Dumas L, Polynomial decomposition method for ocular wavefront analysis, J. Opt. Soc. Am. A 35, 2035 (2018). [CrossRef] [Google Scholar]
  77. Gatinel D, Rampat R, Dumas L, Malet J, An alternative wavefront reconstruction method for human eyes, J. Refract. Surg. 36, 74 (2020). [CrossRef] [Google Scholar]
  78. Santos VAD, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, Garhofer G, Werkmeister RM, CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning, Biomed. Opt. express 10, 622 (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.