Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 11
Number of page(s) 16
DOI https://doi.org/10.1051/jeos/2025005
Published online 04 March 2025

© The Author(s), published by EDP Sciences, 2025

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

The recent research studies of optical pulses focus mainly on the dynamical features of propagating solitons in different optical fiber systems and other photonic media [14]. In addition, there are different fields of sciences that exploit soliton phenomena in applications such as quantum electronics [57], solid state physics [8, 9], Bose-Einstein condensates [1016] and others. Understanding the physical properties of optical solitons can help to overcome the data over-demand that contribute in many applications in science, technology, and industry. Based on the continuous studies, scientists and engineers have reached an effective innovative tool known as birefringent fiber that possesses an optical property of light polarization enhancing higher transmission speeds. Birefringence is a mechanism in which the light passes through certain materials and is split into two rays having different index of refraction. Due to its prominent significancy in various scientific applications, this phenomena has attained wide attention in the fields of fiber-optic communication system, fiber lasers, and fiber sensors [17]. In optical communication systems, for instance, birefringence fiber can play a vital role in transmitting light signals for long distance with minimal degradation, resulting in more reliable communication. Hence, a lot of studies in literature have intensively discussed the pulse propagation in birefringent fiber.

The dynamic features of optical solitons are dominated by the nonlinear Schrödinger equation (NLSE) and its analogous types of models with various forms of nonlinear refractive index. For example, Menyuk [18, 19] examined the birefringence impact on soliton propagation in single-mode optical fibers. Carrying out numerical computation to a model of coupled NLSE, the analysis of pulse evolution shows that the Kerr effect stabilizes solitons against spreading caused by birefringence. Furthermore, the study concluded that the birefringence must be linear and the standard single-mode birefringent fibers are much suitable for soliton communication system. Recently, Liu et al. [20] investigated the optical nondegenerate solitons in a birefringent fibers with 35° elliptical angle. Making use of the bilinear forms, the nondegenerate bright one- and two-soliton solutions are constructed by solving the coupled NLSE. By virtue of the asymptotic analysis, two degenerate solitons are found to be elastic interactions under certain conditions while two nondegenerate solitons are elastic interactions but it can be made inelastic by adjusting the soliton phase. In an inhomogeneous birefringent nonlinear dispersive medium, Zaabat et al. [21] scrutinized wave-speed management of soliton pulses in emergence of variable dispersion and nonlinearity parameters and external potential. New types of periodic nonlinear waves expressed in the form of Jacobi elliptic functions are extracted which degenerate, as the elliptic modulus approaching unity, to soliton pulse solutions including bright-dipole and bright-dark solutions. It is noted that the wave speed of solitons can be controlled by varying dispersion parameter. In addition, the influence of fractional order derivatives on optical solitons transmitted through birefringence fibers are also reported by different groups of authors. Applying the semi-inverse and fractional variational method, Fu et al. [22] discussed the space-time fractional NLSE with different types of nonlinearity such as Kerr, power, parabolic, dual-power, and log law. Their study results in miscellaneous soliton structures including bright, dark, and singular solitons which display diverse behaviors because of fractional order effects. Considering conformable fractional derivative, Li et al. [23] dealt with Fokas-Lenells equation with the aid of the plane dynamics system. The optical soliton solutions, qualitative analysis and chaotic behaviors of the model are illustrated thoroughly.

Moreover, the effects of the phase chirp on transmitted solitons cannot be ignored as this chirp can rehash the physical aspects of propagating pulses. Mahmood [24] studied the behavior of chirped solitons in a single-mode birefringent fiber described by a coupled NLSE. It is detected that the chirp has a significant role on controlling the threshold amplitude for soliton trapping without causing excessive pulse broadening. Besides, Triki et al. [25] investigated ultrashort light pulses in a birefringent optical fiber under the effect of several physical features. The chirped solitons in the form of dark-dark and bright-bright soliton pairs are induced in the presence of all fiber parameters. The consequence of study indicates that the frequency chirp corresponding to these solitons depends on the intensity of the pulse. Using numerical simulation scheme, Xiao et al. [26, 27] discussed chirped bright and dark vector quasi-solitons in birefringent fiber system characterized by the coupled Ginzburg-Landau equation. The analyzed behaviors displays that both bright and dark vector solitons can be transmitted stably in the birefringent fiber system. For more details about the analytical studies of soliton propagation in birefringent fiber, the reader is referred to the references [2840].

As mentioned above, the dynamics of light pulses transmitted through nonlinear optical media are described by the NLSE-type equations and relevant models. Kaup-Newell equation (KNE) is one of the vital models that describes wave propagations in optical fiber and plasma physics [4144]. This model is found to characterize the sub-pico-second pulses in mono-mode optical fibers. The dimensionless form of KNE is given by [45, 46] Υ t + ia Υ xx + b ( | Υ | 2 Υ ) x = 0 , $$ {\mathrm{{\rm Y}}}_t+{ia}{\mathrm{{\rm Y}}}_{{xx}}+b(|\mathrm{{\rm Y}}{|}^2\mathrm{{\rm Y}}{)}_x=0, $$(1)where Υ(xt) represents a complex-valued function referring to the wave profile. The parameter a denotes the group velocity dispersion while the parameter b describes the effect of nonlinearity in the medium. Equation (1) has been scrutinized in the past to derive the exact soliton solitons. Two group of authors [47, 48] investigated the chirped optical solitons using different integration methodologies. Numerous types of structures are obtained such as bright, dark and singular solitons. The chirped solitons are extracted with their corresponding chirp which is expressed nonlinearly in terms of soliton intensity. With the aid of a novel mathematical technique, new chirped optical soliton solutions are retrieved which can be useful in the fields of optical fibers and plasma physics [49]. Further to this, the perturbed model of KNE has been studied in the past to detect soliton pulses, see [50, 51].

The KNE can be applied in birefringent fiber without four-wave mixing to study the dynamics of optical solitons and the physical properties of the medium. Thus, the model of KNE is addressed as p t + i a 1 p xx + b 1 ( | p | 2 p ) x + c 1 ( | q | 2 q ) x = 0 , q t + i a 2 q xx + b 2 ( | q | 2 q ) x + c 2 ( | p | 2 p ) x = 0 , $$ \begin{array}{l}{p}_t+i{a}_1{p}_{{xx}}+{b}_1(|p{|}^2p{)}_x+{c}_1(|q{|}^2q{)}_x=0,\\ {q}_t+i{a}_2{q}_{{xx}}+{b}_2(|q{|}^2q{)}_x+{c}_2(|p{|}^2p{)}_x=0,\end{array} $$(2)where aj(j = 1, 2) represents the coefficients of group velocity dispersion while bj and cj(j = 1, 2) stand for the nonlinear influence. The previous studies in literature that scrutinized the coupled equations (2) have investigated the chirped-free solitons only. For example, three groups of authors [5254] studies sub pico-second optical pulses of equations (2) by applying distinct mathematical tools. Different wave structures are extracted including bright, dark and singular solitons. Exploiting three integration approaches, the system of KNE (2) is revisited by Rehman et al. [55] to investigate the sub-pico-second optical solitons. The detected wave forms include bright, dark, singular and bright-singular combo solitons as well as periodic singular waves. Recently, Li [56] discussed the dynamical behavior of the coupled KNE by means of bifurcation theory of planar dynamical system. Using this technique, the phase portrait and optical soliton solutions are created.

Our present attention is concentrated on investigating the chirped bright and dark optical pulses of fractional KNE in birefringent fiber in the sense of conformable derivatives [57]. The study is carried out by utilizing the Jacobi elliptic equation method expressed in a form of a first-order nonlinear ordinary differential equation (ODE) with three-degree terms. The modulation instability of the addressed model is examined. The arrangement of this work is as follows. The next section elucidates the properties of conformable fractional derivative. Section 3 describes the governing model of fractional order derivative and its mathematical analysis. In Section 4, abundant types of chirped bright and dark are constructed by using the proposed strategy. Section 5 displays the diagnosis process of the modulation instability through employing the linear stability analysis method. The discussion of obtained results and optical pulse behaviors are illustrated in Section 6. Finally, the conclusion of work is given in Section 7.

2 Conformable fractional derivative

Fractional calculus can be defined in various ways according to the characteristics and conditions of fractional derivative that must be satisfied. Among the introduced definitions in literature are Riemann and Liouville, Caputo-Katugampola, Grünwald-Letnikov, Marchaud and Others [58]. Conformable fractional derivative [59] is one of the most applied techniques in the recent research activities involving fractional calculus, see [60]. The definition of conformable fractional derivative is described as follows.

Definition 1.

Let f : (0, ∞) → R, then the conformable fractional derivative of f of order α is defined as D t α f ( t ) = lim ε 0 f ( t + ε   t 1 - α ) - f ( t ) ε , $$ {D}_t^{\alpha }f(t)=\underset{\epsilon \to 0}{\mathrm{lim}}\frac{f(t+\epsilon \enspace {t}^{1-\alpha })-f(t)}{\epsilon }, $$(3)for all t > 0, 0 < α ≤ 1. In case that the conformable fractional derivative of f of order α exists, then it is said that f is α-differentiable. The conformable fractional derivative satisfies some properties displayed in the following theorems.

Theorem 1.

Let α ∈ (0, 1] and f = f(t), g = g(t) be α-differentiable at a point t > 0, then

  1. D t α ( ϱ ) = 0 , ϱ $ {D}_t^{\alpha }(\varrho )=0,\varrho $ is a constant.

  2. D t α ( t ϑ ) = ϑ t ϑ - α $ {D}_t^{\alpha }({t}^{\vartheta })=\vartheta {t}^{\vartheta -\alpha }$, for all ϑ ∈ R.

  3. D t α ( af + bg ) = a D t α f + b D t α g $ {D}_t^{\alpha }({af}+{bg})=a{D}_t^{\alpha }f+b{D}_t^{\alpha }g$, for all a, b ∈ R.

  4. D t α ( fg ) = g D t α f + f D t α g $ {D}_t^{\alpha }({fg})=g{D}_t^{\alpha }f+f{D}_t^{\alpha }g$.

  5. D t α ( f g ) = g D t α f - f D t α g g 2 $ {D}_t^{\alpha }\left(\frac{f}{g}\right)=\frac{g{D}_t^{\alpha }f-f{D}_t^{\alpha }g}{{g}^2}$.

Additionally, if f is differentiable, then D t α f ( t ) = t 1 - α df dt $ {D}_t^{\alpha }f(t)={t}^{1-\alpha }\frac{{df}}{{dt}}$.

Theorem 2.

Let f : (0, ∞) → R, be a function such that f is differentiable and also α-differentiable. Let g be a function defined in the range of f and also differentiable. Then, D t α ( f g ) ( t ) = t 1 - α g ' ( t ) f ' ( g ( t ) ) , $$ {D}_t^{\alpha }(f\circ g)(t)={t}^{1-\alpha }{g}^{\prime}(t){f}^{\prime}(g(t)), $$(4)where prime denotes the classical derivatives with respect to t.

3 Governing model and mathematical analysis

The space-time fractional Kaup-Newell equation in birefringent fiber is described by D t α p + i a 1 D x 2 α p + b 1 D x α ( | p | 2 p ) + c 1 D x α ( | q | 2 q ) = 0 , D t α q + i a 2 D x 2 α q + b 2 D x α ( | q | 2 q ) + c 2 D x α ( | p | 2 p ) = 0 . $$ \begin{array}{ll}& {D}_t^{\alpha }p+i{a}_1{D}_x^{2\alpha }p+{b}_1{D}_x^{\alpha }(|p{|}^2p)+{c}_1{D}_x^{\alpha }(|q{|}^2q)=0,\\ & {D}_t^{\alpha }q+i{a}_2{D}_x^{2\alpha }q+{b}_2{D}_x^{\alpha }(|q{|}^2q)+{c}_2{D}_x^{\alpha }(|p{|}^2p)=0.\end{array} $$(5)

This equation characterizes the propagation of very short (sub-picosecond) light pulses in birefringent fiber which incorporates fractional dispersion. To the best of our knowledge, equation (5) has not been discussed before. Consider the traveling wave transformation introduced as p ( x , t ) = ψ 1 ( ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = ψ 2 ( ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{ll}& p(x,t)={\psi }_1(\xi ){e}^{i\left({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha }\right)},\\ & q(x,t)={\psi }_2(\xi ){e}^{i\left({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha }\right)},\end{array} $$(6)where α denotes fractional-order derivative and ξ represents the wave coordinate of spatial variable x and temporal variable t. The variable ξ is given by ξ = x α α - ν t α α ,   0 < α 1 . $$ \xi =\frac{{x}^{\alpha }}{\alpha }-\nu \frac{{t}^{\alpha }}{\alpha },\enspace 0<\alpha \le 1. $$(7)

The two functions ψ1(ξ) and ψ2(ξ) stand for the amplitudes of the solitons while the functions ϕ1(ξ) and ϕ2(ξ) account for nonlinear phase shift. The parameters ω1ω2, and ν are real constants denoting the wave number and the soliton velocity.

Applying the transformation (6), the coupled equation (5) breaks up into a real part given by - ν ψ 1 ' - a 1 ψ 1 ϕ 1 - 2 a 1 ψ 1   ϕ 1 ' + 3 b 1 ψ 1 2 ψ 1 ' + 3 c 1 ψ 2 2 ψ 2 = 0 , - ν ψ 2 ' - a 2 ψ 2 ϕ 2 - 2 a 2 ψ 2 ϕ 2 ' + 3 b 2 ψ 2 2 ψ 2 ' + 3 c 2 ψ 1 2 ψ 1 = 0 , $$ \begin{array}{ll}& -\nu {\psi }_1^{\prime}-{a}_1{\psi }_1{\phi }_1^{\mathrm{\prime\prime }}-2{a}_1{\psi }_1^\mathrm{\prime\prime}\enspace {\phi }_1^{\prime\prime}+3{b}_1{\psi }_1^2{\psi }_1^{\prime\prime}+3{c}_1{\psi }_2^2{\psi }_2^\mathrm{\prime\prime}=0,\\ & -\nu {\psi }_2^{\prime\prime}-{a}_2{\psi }_2{\phi }_2^{\mathrm{\prime\prime }}-2{a}_2{\psi }_2^\mathrm{\prime\prime}{\phi }_2^{\prime\prime}+3{b}_2{\psi }_2^2{\psi }_2^{\prime\prime}+3{c}_2{\psi }_1^2{\psi }_1^\mathrm{\prime\prime}=0,\end{array} $$(8)and an imaginary part given by a 1 ψ 1 - ω 1 ψ 1 - ν ψ 1 ϕ 1 ' - a 1 ψ 1 ϕ 1 2 + b 1 ϕ 1 ψ 1 3 + c 1 ϕ 2 ψ 2 3 = 0 , a 2 ψ 2 - ω 2 ψ 2 - ν ψ 2 ϕ 2 ' - a 2 ψ 2 ϕ 2 2 + b 2 ϕ 2 ψ 2 3 + c 2 ϕ 1 ψ 1 3 = 0 . $$ \begin{array}{ll}& {a}_1{\psi }_1^{\mathrm{\prime\prime }}-{\omega }_1{\psi }_1-\nu {\psi }_1{\phi }_1^{\prime\prime}-{a}_1{\psi }_1{\phi }_1^\mathrm{\prime\prime}2+{b}_1{\phi }_1^\mathrm{\prime\prime}{\psi }_1^3+{c}_1{\phi }_2^\mathrm{\prime\prime}{\psi }_2^3=0,\\ & {a}_2{\psi }_2^{\prime\prime }-{\omega }_2{\psi }_2-\nu {\psi }_2{\phi }_2^{\prime\prime}-{a}_2{\psi }_2{\phi }_2^\mathrm{\prime\prime}2+{b}_2{\phi }_2^\mathrm{\prime\prime}{\psi }_2^3+{c}_2{\phi }_1^\mathrm{\prime\prime}{\psi }_1^3=0.\end{array} $$(9)

To handle the set of obtained equations analytically, the relation between ψ1 and ψ2 is proposed as ψ 2 = λ ψ 1 , $$ {\psi }_2=\lambda {\psi }_1, $$(10)where λ ≠ 1 is a real constant. As a result, the systems (8) and (9) are converted respectively to - ν ψ 1 ' - a 1 ( ψ 1 ϕ 1 + 2 ψ 1 ϕ 1 ) + 3 ( b 1 + c 1 λ 3 ) ψ 1 2 ψ 1 = 0 , - λ ν ψ 1 - a 2 λ ( ψ 1 ϕ 2 + 2 ψ 1 ϕ 2 ) + 3 ( b 2 λ 3 + c 2 ) ψ 1 2 ψ 1 = 0 , $$ \begin{array}{ll}& -\nu {\psi }_1^{\prime\prime}-{a}_1\left({\psi }_1{\phi }_1^{\prime\prime }+2{\psi }_1^\mathrm{\prime\prime}{\phi }_1^\mathrm{\prime\prime}\right)+3({b}_1+{c}_1{\lambda }^3){\psi }_1^2{\psi }_1^\mathrm{\prime\prime}=0,\\ & -{\lambda \nu }{\psi }_1^\mathrm{\prime\prime}-{a}_2\lambda \left({\psi }_1{\phi }_2^{\mathrm{\prime\prime }}+2{\psi }_1^\mathrm{\prime\prime}{\phi }_2^\mathrm{\prime\prime}\right)+3({b}_2{\lambda }^3+{c}_2){\psi }_1^2{\psi }_1^\mathrm{\prime\prime}=0,\end{array} $$(11)and a 1 ψ 1 - ω 1 ψ 1 - ν ψ 1 ϕ 1 - a 1 ψ 1 ϕ 1 2 + ( b 1 ϕ 1 + c 1 λ 3 ϕ 2 ) ψ 1 3 = 0 , a 2 λ ψ 1 - ω 2 λ ψ 1 - ν λ ψ 1 ϕ 2 - a 2 λ ψ 1 ϕ 2 2 + ( b 2 λ 3 ϕ 2 + c 2 ϕ 1 ) ψ 1 3 = 0 . $$ \begin{array}{ll}& {a}_1{\psi }_1^{\mathrm{\prime\prime }}-{\omega }_1{\psi }_1-\nu {\psi }_1{\phi }_1^\mathrm{\prime\prime}-{a}_1{\psi }_1{\phi }_1^\mathrm{\prime\prime}2+({b}_1{\phi }_1^\mathrm{\prime\prime}+{c}_1{\lambda }^3{\phi }_2^\mathrm{\prime\prime}){\psi }_1^3=0,\\ & {a}_2\lambda {\psi }_1^{\mathrm{\prime\prime }}-{\omega }_2\lambda {\psi }_1-{\nu \lambda }{\psi }_1{\phi }_2^\mathrm{\prime\prime}-{a}_2\lambda {\psi }_1{\phi }_2^\mathrm{\prime\prime}2+({b}_2{\lambda }^3{\phi }_2^\mathrm{\prime\prime}+{c}_2{\phi }_1^\mathrm{\prime\prime}){\psi }_1^3=0.\end{array} $$(12)

One can deduce that both equations in (11) can be integrated and resulting in the first integral as ϕ 1 = - ν 2 a 1 + 3 ( b 1 + c 1 λ 3 ) 4 a 1 ψ 1 2 , ϕ 2 = - ν 2 a 2 + 3 ( b 2 λ 3 + c 2 ) 4 a 2 λ ψ 1 2 , $$ \begin{array}{ll}& {\phi }_1^\mathrm{\prime\prime}=-\frac{\nu }{2{a}_1}+\frac{3({b}_1+{c}_1{\lambda }^3)}{4{a}_1}{\psi }_1^2,\\ & {\phi }_2^\mathrm{\prime\prime}=-\frac{\nu }{2{a}_2}+\frac{3({b}_2{\lambda }^3+{c}_2)}{4{a}_2\lambda }{\psi }_1^2,\end{array} $$(13)where the integration constant is set zero. Consequently, the chirping expression of the first field component has the form δ ω 1 = ν 2 a 1 - 3 ( b 1 + c 1 λ 3 ) 4 a 1 ψ 1 2 , $$ \delta {\omega }_1=\frac{\nu }{2{a}_1}-\frac{3({b}_1+{c}_1{\lambda }^3)}{4{a}_1}{\psi }_1^2, $$(14)whereas the chirping expression of the second field component is identified as δ ω 2 = ν 2 a 2 - 3 ( b 2 λ 3 + c 2 ) 4 a 2 λ ψ 1 2 . $$ \delta {\omega }_2=\frac{\nu }{2{a}_2}-\frac{3({b}_2{\lambda }^3+{c}_2)}{4{a}_2\lambda }{\psi }_1^2. $$(15)

Substituting (13) into equation (12), we obtain ψ 1 - σ 1 ψ 1 - γ 1 ψ 1 3 + β 1 ψ 1 5 = 0 , ψ 1 - σ 2 ψ 1 - γ 2 ψ 1 3 + β 2 ψ 1 5 = 0 . $$ \begin{array}{l}{\psi }_1^{\mathrm{\prime\prime }}-{\sigma }_1{\psi }_1-{\gamma }_1{\psi }_1^3+{\beta }_1{\psi }_1^5=0,\\ {\psi }_1^{\mathrm{\prime\prime }}-{\sigma }_2{\psi }_1-{\gamma }_2{\psi }_1^3+{\beta }_2{\psi }_1^5=0.\end{array} $$(16)

The parameters σj, γj, βj; (j = 1, 2) in the system of equations (16) are defined as σ 1 = 4 a 1 ω 1 - ν 2 4 a 1 2 , γ 1 = ν ( a 2 b 1 + a 1 c 1 λ 3 ) 2 a 2 a 1 2 ,   β 1 = 3 a 2 ( b 1 + c 1 λ 3 ) ( b 1 - 3 c 1 λ 3 ) + 12 a 1 c 1 λ 2 ( b 2 λ 3 + c 2 ) 16 a 2 a 1 2 , σ 2 = 4 a 2 ω 2 - ν 2 4 a 2 2 , γ 2 = ν ( a 1 b 2 λ 3 + a 2 c 2 ) 2 λ a 1 a 2 2 , β 2 = 3 a 1 ( b 2 λ 3 + c 2 ) ( b 2 λ 3 - 3 c 2 ) + 12 a 2 c 2 λ ( b 1 + c 1 λ 3 ) 16 a 1 a 2 2 λ 2 , $$ \begin{array}{ll}{\sigma }_1=\frac{4{a}_1{\omega }_1-{\nu }^2}{4{a}_1^2},{\gamma }_1=\frac{\nu ({a}_2{b}_1+{a}_1{c}_1{\lambda }^3)}{2{a}_2{a}_1^2},\enspace {\beta }_1=\frac{3{a}_2({b}_1+{c}_1{\lambda }^3)({b}_1-3{c}_1{\lambda }^3)+12{a}_1{c}_1{\lambda }^2({b}_2{\lambda }^3+{c}_2)}{16{a}_2{a}_1^2},& \\ {\sigma }_2=\frac{4{a}_2{\omega }_2-{\nu }^2}{4{a}_2^2},{\gamma }_2=\frac{\nu ({a}_1{b}_2{\lambda }^3+{a}_2{c}_2)}{2\lambda {a}_1{a}_2^2},{\beta }_2=\frac{3{a}_1({b}_2{\lambda }^3+{c}_2)({b}_2{\lambda }^3-3{c}_2)+12{a}_2{c}_2\lambda ({b}_1+{c}_1{\lambda }^3)}{16{a}_1{a}_2^2{\lambda }^2},& \end{array} $$(17)where both a1 and a2 are not equal to zero. The coupled equations (16) are consistent under the conditions σ 1 σ 2 = γ 1 γ 2 = β 1 β 2 . $$ \frac{{\sigma }_1}{{\sigma }_2}=\frac{{\gamma }_1}{{\gamma }_2}=\frac{{\beta }_1}{{\beta }_2}. $$(18)

Accordingly, the system of equations (16) turns into ψ 1 - σ ψ 1 - γ ψ 1 3 + β ψ 1 5 = 0 , $$ {\psi }_1^{\mathrm{\prime\prime }}-\sigma {\psi }_1-\gamma {\psi }_1^3+\beta {\psi }_1^5=0, $$(19)where the parameters βγ and σ are given by σ = σ 1 = σ 2 ,   γ = γ 1 = γ 2 ,   β = β 1 = β 2 . $$ \sigma ={\sigma }_1={\sigma }_2,\enspace \gamma ={\gamma }_1={\gamma }_2,\enspace \beta ={\beta }_1={\beta }_2. $$(20)

Since equation (19) can be integrated, then it is reduced to 6 ψ 1 2 - 6 σ ψ 1 2 - 3 γ ψ 1 4 + 2 β ψ 1 6 + 12 μ = 0 , $$ 6{\psi }_1^\mathrm{\prime\prime}2-6\sigma {\psi }_1^2-3\gamma {\psi }_1^4+2\beta {\psi }_1^6+12\mu =0, $$(21)where μ is the integration constant. For convenience, the form of equation (21) can be modified by introducing the variable transformation given as ψ 1 = Ψ 1 2 . $$ {\psi }_1={\mathrm{\Psi }}^{\frac{1}{2}}. $$(22)

Subsequently, one can reach the equation of the form 3 Ψ 2 + 24 μ Ψ - 12 σ Ψ 2 - 6 γ Ψ 3 + 4 β Ψ 4 = 0 . $$ 3{\mathrm{\Psi }}^\mathrm{\prime\prime}2+24\mu \mathrm{\Psi }-12\sigma {\mathrm{\Psi }}^2-6\gamma {\mathrm{\Psi }}^3+4\beta {\mathrm{\Psi }}^4=0. $$(23)

Based on the relations (6), (10) and (22), the solutions of equation (23) reveal the amplitude structures of soliton waves that propagate in birefringent optical fiber. Further to this, one can recover the general form of solutions for the coupled equations (5) as p ( x , t ) = Ψ 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ Ψ 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) ) , $$ \begin{array}{ll}& p(x,t)={\mathrm{\Psi }}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ & q(x,t)=\lambda {\mathrm{\Psi }}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha }))},\end{array} $$(24)where the phase variable ϕ1(ξ) and ϕ2(ξ) can be obtained by integrating equations (13).

Thus, our aim in the next section is to solve equation (23) analytically by the proposed method so as to derive soliton solutions of bright and dark structures.

4 Chirped soliton solutions

The solution of equation (23) is derived by means of the Jacobi elliptic equation that has a form of a first-order nonlinear ODE with three-degree terms. Before implementing this technique, we put forward the transformation given by Ψ ( ξ ) = Γ ( ζ ) ,   ζ = ϵ ξ , $$ \begin{array}{cc}\mathrm{\Psi }(\xi )=\mathrm{\Gamma }(\zeta ),\enspace & \zeta ={\epsilon \xi },\end{array} $$(25)by which equation (23) is rearranged to 3 ϵ 2 Γ 2 + 24 μ Γ - 12 σ Γ 2 - 6 γ Γ 3 + 4 β Γ 4 = 0 . $$ 3{\epsilon }^2{\mathrm{\Gamma }}^\mathrm{\prime\prime}2+24\mu \mathrm{\Gamma }-12\sigma {\mathrm{\Gamma }}^2-6\gamma {\mathrm{\Gamma }}^3+4\beta {\mathrm{\Gamma }}^4=0. $$(26)where ϵ is a constant to be determined. It is worth mentioning that equation (26) can be expressed in terms of the elliptic Jacobi sine [6164]. However, we are interested in creating various solutions to equation (26) by considering its solution in the form Γ ( ζ ) = d 0 + d 1 Λ ( ζ ) + d 2 Λ ( ζ ) + d 3 Λ 2 ( ζ ) 1 + Λ ( ζ ) , $$ \mathrm{\Gamma }(\zeta )={d}_0+{d}_1\mathrm{\Lambda }(\zeta )+{d}_2\sqrt{\mathrm{\Lambda }(\zeta )}+{d}_3\frac{{\mathrm{\Lambda }}^2(\zeta )}{1+\mathrm{\Lambda }(\zeta )}, $$(27)where dj, (j = 0, 1, 2, 3) are constants to be identified. The function Λ(ζ) satisfies the following ODE given by [65] ( Λ ' ( ζ ) ) 2 = f Λ ( ζ ) + g Λ ( ζ ) 2 + h Λ ( ζ ) 3 , $$ (\mathrm{\Lambda }\prime\prime(\zeta ){)}^2=f\mathrm{\Lambda }(\zeta )+g\mathrm{\Lambda }(\zeta {)}^2+h\mathrm{\Lambda }(\zeta {)}^3, $$(28)which is an equivalent form of equation [66] ( Ξ ( ζ ) ) 2 = 1 4 [ f + g Ξ ( ζ ) 2 + h Ξ ( ζ ) 4 ] , $$ ({\mathrm{\Xi }}^\mathrm{\prime\prime}(\zeta ){)}^2=\frac{1}{4}\left[f+g\mathrm{\Xi }(\zeta {)}^2+h\mathrm{\Xi }(\zeta {)}^4\right], $$(29)where Λ(ζ) = Ξ(ζ)2 and fgh are constants. The last equation is widely employed in literature and is known as the Jacobi elliptic equation because it permits solutions in terms of the Jacobi elliptic functions (JEFs) sn(ζ, m), cn(ζ, m), dn(ζ, m), and so on [67]. Therefore, equation (28) has similarly different JEFs solutions [65, 68, 69]. The parameter m is the modulus of JEFs such that 0 < m < 1. It is well known, when m approaches 0 or 1, JEFs degenerate to trigonometric and hyperbolic functions. For instance, one can reach sn(ζm) = sin(ξ), cn(ζm) = cos(ξ), dn(ζm) = 1 as m tends to 0 while it is found that sn(ζm) = tanh(ξ), cn(ζm) = sech(ξ), dn(ζm) = sech(ξ) when m approaches 1. As mentioned above, equation (28) has abundant JEFs solutions, however, we focus only on three form of JEFs as given in Table 1.

Table 1

Three Jacobi elliptic solutions to equation (28).

Inserting (27) along with (28) into equation (26), we arrive at a polynomial in Λl(ζ), (l = 0, 1, …, 8). Equating the coefficients of Λl(ζ) to zero, this yields a system of algebraic equations. Solving this system of equations, we obtain four main sets that detect distinct values for the constants dj, (j = 0, 1, …, 5) under specific restrictions and hence each set induces various cases of solutions according to the variety of JEFs.

Set I. d 0 = d 2 = d 3 = 0 ,   d 1 = 2 σ h γ g ,   ϵ = 2 σ g , $$ {d}_0={d}_2={d}_3=0,\enspace {d}_1=\frac{2\sigma h}{{\gamma g}},\enspace \epsilon =2\sqrt{\frac{\sigma }{g}}, $$(30)under the constraint conditions μ γ g 2 + f h σ 2 = 0 , β = 0 , $$ \begin{array}{cc}{\mu \gamma }{g}^2+fh{\sigma }^2=0,& \beta =0,\end{array} $$(31)where σg > 0. Implementing these findings to (27) and using (24) and (25), the following cases of solutions to equation (5) are derived.

Case I1. If f = 4, g = −4(1 + m2), h = 4m2, Λ(ζ) = sn2(ζm), equation (5) secures JEF solution of the form p ( x , t ) = - 2 σ m 2 γ ( m 2 + 1 ) sn ( - σ m 2 + 1 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - 2 σ m 2 γ ( m 2 + 1 ) sn ( - σ m 2 + 1 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{2\sigma {m}^2}{\gamma ({m}^2+1)}}\mathrm{sn}\left(\sqrt{-\frac{\sigma }{{m}^2+1}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{2\sigma {m}^2}{\gamma ({m}^2+1)}}\mathrm{sn}\left(\sqrt{-\frac{\sigma }{{m}^2+1}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(32)provided that σ < 0 and γ > 0. The conditions (31) reduce to μ γ ( m 2 + 1 ) 2 + σ 2 m 2 = 0 , β = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2+1{)}^2+{\sigma }^2{m}^2=0,& \beta =0.\end{array} $$(33)

As m approaches 1, solution (32) collapses to a soliton solution given by p ( x , t ) = - σ γ tanh ( - σ 2 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - σ γ tanh ( - σ 2 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{\sigma }{\gamma }}\mathrm{tanh}\left(\sqrt{-\frac{\sigma }{2}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{\sigma }{\gamma }}\mathrm{tanh}\left(\sqrt{-\frac{\sigma }{2}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(34)which represent dark soliton as shown in Figure 1, where σ < 0 and γ > 0. From (33), we arrive at   4 μ γ + σ 2 = 0 , β = 0 . $$ \enspace \begin{array}{cc}4{\mu \gamma }+{\sigma }^2=0,& \beta =0.\end{array} $$(35)

thumbnail Figure 1

Intensity profile of dark soliton given by solutions (34), (42) and (52) with parameter values a1 = a2 = b1 = b2 = c1 = c2 = ω1 = 0.5, ν = 1.25, λ = 1.5. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case I2. If f = 4(1 − m2), g = −4(1 − 2m2), h = −4m2, Λ(ζ) = cn2(ζ, m), equation (5) possesses JEF solution of the form p ( x , t ) = - 2 σ m 2 γ ( 2 m 2 - 1 ) cn ( σ 2 m 2 - 1 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - 2 σ m 2 γ ( 2 m 2 - 1 ) cn ( σ 2 m 2 - 1 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{2\sigma {m}^2}{\gamma (2{m}^2-1)}}\mathrm{cn}\left(\sqrt{\frac{\sigma }{2{m}^2-1}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{2\sigma {m}^2}{\gamma (2{m}^2-1)}}\mathrm{cn}\left(\sqrt{\frac{\sigma }{2{m}^2-1}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(36)where σ > 0, γ < 0 as m2 > 1/2 and σ < 0, γ < 0 as m2 < 1/2. The conditions (31) reduce to μ γ ( 2 m 2 - 1 ) 2 + σ 2 m 2 ( m 2 - 1 ) = 0 ,   β = 0 . $$ \begin{array}{cc}{\mu \gamma }(2{m}^2-1{)}^2+{\sigma }^2{m}^2({m}^2-1)=0,\enspace & \beta =0.\end{array} $$(37)

As m approaches 1, solution (36) co llapses to a soliton solution given by p ( x , t ) = - 2 σ γ sech ( σ ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - 2 σ γ sech ( σ ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{2\sigma }{\gamma }}\mathrm{sech}\left(\sqrt{\sigma }\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{2\sigma }{\gamma }}\mathrm{sech}\left(\sqrt{\sigma }\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(38)which describes bright soliton as depicted in Figure 2, where σ > 0 and γ < 0. From (37), we arrive at μ = 0 ,   β = 0 . $$ \begin{array}{cc}\mu =0,\enspace & \beta =0.\end{array} $$(39)

thumbnail Figure 2

Intensity profile of bright soliton given by solutions (38), (48) and (56) with parameter values a1 = 0.93, a2 = b2 = −0.5, b1 = c1 = c2 = 0.5, ω1 = 1.5, ν = 0.75, λ = 1.5. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case I3. If f = 1, g = 2(1 − 2m2), h = 1, Λ ( ζ ) = sn 2 ( ζ , m ) ( 1 ± cn ( ζ , m ) ) 2 $ \mathrm{\Lambda }(\zeta )=\frac{{\mathrm{sn}}^2(\zeta,m)}{(1\pm \mathrm{cn}(\zeta,m){)}^2}$, equation (5) admits JEF solution of the form p ( x , t ) = [ - σ γ ( 2 m 2 - 1 ) 1 - cn ( - 2 σ 2 m 2 - 1 ξ ) 1 + cn ( - 2 σ 2 m 2 - 1 ξ ) ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - σ γ ( 2 m 2 - 1 ) 1 - cn ( - 2 σ 2 m 2 - 1 ξ ) 1 + cn ( - 2 σ 2 m 2 - 1 ξ ) ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{\sigma }{\gamma (2{m}^2-1)}\frac{1-\mathrm{cn}\left(\sqrt{-\frac{2\sigma }{2{m}^2-1}}\xi \right)}{1+\mathrm{cn}\left(\sqrt{-\frac{2\sigma }{2{m}^2-1}}\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{\sigma }{\gamma (2{m}^2-1)}\frac{1-\mathrm{cn}\left(\sqrt{-\frac{2\sigma }{2{m}^2-1}}\xi \right)}{1+\mathrm{cn}\left(\sqrt{-\frac{2\sigma }{2{m}^2-1}}\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(40)where σ < 0, γ > 0 as m2 > 1/2 and σ > 0, γ > 0 as m2 < 1/2. The conditions (31) reduce to 4 μ γ ( 2 m 2 - 1 ) 2 + σ 2 = 0 ,   β = 0 . $$ \begin{array}{cc}4{\mu \gamma }(2{m}^2-1{)}^2+{\sigma }^2=0,\enspace & \beta =0.\end{array} $$(41)

As m approaches 1, solution (40) convertes to a soliton solution given by p ( x , t ) = [ - σ γ 1 - sech ( - 2 σ ξ ) 1 + sech ( - 2 σ ξ ) ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - σ γ 1 - sech ( - 2 σ ξ ) 1 + sech ( - 2 σ ξ ) ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{\sigma }{\gamma }\frac{1-\mathrm{sech}\left(\sqrt{-2\sigma }\xi \right)}{1+\mathrm{sech}\left(\sqrt{-2\sigma }\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{\sigma }{\gamma }\frac{1-\mathrm{sech}\left(\sqrt{-2\sigma }\xi \right)}{1+\mathrm{sech}\left(\sqrt{-2\sigma }\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(42)which characterizes dark soliton as plotted in Figure 1, where σ < 0 and γ > 0. From (41), we arrive at 4 μ γ + σ 2 = 0 ,   β = 0 . $$ \begin{array}{cc}4{\mu \gamma }+{\sigma }^2=0,\enspace & \beta =0.\end{array} $$(43)

Set II. d 0 = - 2 σ ( g + τ ) γ ( g + 3 τ ) ,   d 1 = - 4 σ h γ ( g + 3 τ ) ,   d 2 = d 3 = 0 ,   ϵ = 2 - 2 σ g + 3 τ , $$ {d}_0=-\frac{2\sigma (g+\tau )}{\gamma (g+3\tau )},\enspace {d}_1=-\frac{4\sigma h}{\gamma (g+3\tau )},\enspace {d}_2={d}_3=0,\enspace \epsilon =2\sqrt{-\frac{2\sigma }{g+3\tau }}, $$(44)under the constraint conditions   μ γ ( g + 3 τ ) 2 + 2 τ σ 2 ( g + τ ) = 0 , β = 0 , $$ \enspace \begin{array}{cc}{\mu \gamma }(g+3\tau {)}^2+2\tau {\sigma }^2(g+\tau )=0,& \beta =0,\end{array} $$(45)where τ = g 2 - 4 f h $ \tau =\sqrt{{g}^2-4fh}$ and σ(g + 3τ) < 0. Applying these outcomes to (27) and using (24) and (25), the following cases of solutions to equation (5) are extracted.

Case II1. If f = 4, g = −4(1 + m2), h = 4m2, Λ(ζ) = sn2(ζ, m), equation (5) acquires JEF solution of the form p ( x , t ) = 2 σ γ ( m 2 - 2 ) dn ( - σ m 2 - 2 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ 2 σ γ ( m 2 - 2 ) dn ( - σ m 2 - 2 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)=\sqrt{\frac{2\sigma }{\gamma ({m}^2-2)}}\mathrm{dn}\left(\sqrt{-\frac{\sigma }{{m}^2-2}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{\frac{2\sigma }{\gamma ({m}^2-2)}}\mathrm{dn}\left(\sqrt{-\frac{\sigma }{{m}^2-2}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(46)where σ > 0 and γ < 0. The conditions (45) reduce to μ γ ( m 2 - 2 ) 2 + σ 2 ( m 2 - 1 ) = 0 ,   β = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2-2{)}^2+{\sigma }^2({m}^2-1)=0,\enspace & \beta =0.\end{array} $$(47)

As m approaches 1, solution (46) changes to a soliton solution given by p ( x , t ) = - 2 σ γ sech ( σ ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - 2 σ γ sech ( σ ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{2\sigma }{\gamma }}\mathrm{sech}\left(\sqrt{\sigma }\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{2\sigma }{\gamma }}\mathrm{sech}\left(\sqrt{\sigma }\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(48)which illustrates bright soliton as exhibited in Figure 2, where σ > 0 and γ < 0. From (47), we arrive at μ = 0 ,   β = 0 . $$ \begin{array}{cc}\mu =0,\enspace & \beta =0.\end{array} $$(49)

Case II2. If f = 4(1 − m2), g = −4(1 − 2m2), h = −4m2, Λ(ζ) = cn2(ζ, m), equation (5) has JEF solution of the form p ( x , t ) = m - 2 σ γ ( m 2 + 1 ) sn ( - σ m 2 + 1 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ m - 2 σ γ ( m 2 + 1 ) sn ( - σ m 2 + 1 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=m\sqrt{-\frac{2\sigma }{\gamma ({m}^2+1)}}\mathrm{sn}\left(\sqrt{-\frac{\sigma }{{m}^2+1}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)={\lambda m}\sqrt{-\frac{2\sigma }{\gamma ({m}^2+1)}}\mathrm{sn}\left(\sqrt{-\frac{\sigma }{{m}^2+1}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(50)provided that σ < 0 and γ > 0. The conditions (45) reduce to μ γ ( m 2 + 1 ) 2 + σ 2 m 2 = 0 ,   β = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2+1{)}^2+{\sigma }^2{m}^2=0,\enspace & \beta =0.\end{array} $$(51)

As m approaches 1, solution (50) reduces to a soliton solution given by p ( x , t ) = - σ γ tanh ( - σ 2 ξ ) e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ - σ γ tanh ( - σ 2 ξ ) e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)=\sqrt{-\frac{\sigma }{\gamma }}\mathrm{tanh}\left(\sqrt{-\frac{\sigma }{2}}\xi \right){e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda \sqrt{-\frac{\sigma }{\gamma }}\mathrm{tanh}\left(\sqrt{-\frac{\sigma }{2}}\xi \right){e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(52)which presents dark soliton as shown in Figure 1, where σ < 0 and γ > 0. From (51), we arrive at 4 μ γ + σ 2 = 0 ,   β = 0 . $$ \begin{array}{cc}4{\mu \gamma }+{\sigma }^2=0,\enspace & \beta =0.\end{array} $$(53)

Case II3. If f = 1, g = 2(1 − 2m2), h = 1, Λ ( ζ ) = sn 2 ( ζ , m ) ( 1 ± cn ( ζ , m ) ) 2 $ \mathrm{\Lambda }(\zeta )=\frac{{\mathrm{sn}}^2(\zeta,m)}{(1\pm {cn}(\zeta,m){)}^2}$, equation (5) gains JEF solution of the form p ( x , t ) = [ 4 σ γ ( m 2 + n 2 - 6 mn ) 1 - ( m 2 - mn ) { 1 + cn ( 2 σ m 2 + n 2 - 6 mn ξ ) } 1 + cn ( 2 σ m 2 + n 2 - 6 mn ξ ) ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ 4 σ γ ( m 2 + n 2 - 6 mn ) 1 - ( m 2 - mn ) { 1 + cn ( 2 σ m 2 + n 2 - 6 mn ξ ) } 1 + cn ( 2 σ m 2 + n 2 - 6 mn ξ ) ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[\frac{4\sigma }{\gamma ({m}^2+{n}^2-6{mn})}\frac{1-({m}^2-{mn})\left\{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2+{n}^2-6{mn}}}\xi \right)\right\}}{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2+{n}^2-6{mn}}}\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[\frac{4\sigma }{\gamma ({m}^2+{n}^2-6{mn})}\frac{1-({m}^2-{mn})\left\{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2+{n}^2-6{mn}}}\xi \right)\right\}}{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2+{n}^2-6{mn}}}\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(54)where n = m 2 - 1 $ n=\sqrt{{m}^2-1}$. The conditions (45) reduce to μ γ ( m 2 + n 2 - 6 mn ) 2 - 4 σ 2 mn ( m - n ) 2 = 0 ,   β = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2+{n}^2-6{mn}{)}^2-4{\sigma }^2{mn}(m-n{)}^2=0,\enspace & \beta =0.\end{array} $$(55)

As m approaches 1, solution (54) degenerates to a soliton solution given by p ( x , t ) = [ - 4 σ γ sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 4 σ γ sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{4\sigma }{\gamma }\frac{\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{4\sigma }{\gamma }\frac{\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(56)which describes bright soliton as shown in Figure 2, where σ > 0 and γ < 0. From (55), we arrive at μ = 0 ,   β = 0 . $$ \begin{array}{cc}\mu =0,\enspace & \beta =0.\end{array} $$(57)

Set III. d 0 = d 2 = 0 ,   d 1 = 2 σ ( 3 f - 2 g + h ) γ ( g - 3 f ) ,   d 3 = - 2 σ ( 3 f - 2 g + h ) γ ( g - 3 f ) ,   ϵ = 2 σ g - 3 f , $$ {d}_0={d}_2=0,\enspace {d}_1=\frac{2\sigma (3f-2g+h)}{\gamma (g-3f)},\enspace {d}_3=-\frac{2\sigma (3f-2g+h)}{\gamma (g-3f)},\enspace \epsilon =2\sqrt{\frac{\sigma }{g-3f}}, $$(58)under the constraint conditions μ γ ( g - 3 f ) 2 + f σ 2 ( 3 f - 2 g + h ) = 0 , 4 β σ ( 3 f - 2 g + h ) 2 - 3 γ 2 ( g - 3 f ) ( f - g + h ) = 0 , $$ \begin{array}{c}{\mu \gamma }(g-3f{)}^2+f{\sigma }^2(3f-2g+h)=0,\\ 4{\beta \sigma }(3f-2g+h{)}^2-3{\gamma }^2(g-3f)(f-g+h)=0,\end{array} $$(59)where σ(g − 3f) > 0. Applying these outcomes to (27) and using (24) and (25), the following cases of solutions to equation (5) are extracted.

Case III1. If f = 4, g = −4(1 + m2), h = 4m2, Λ(ζ) = sn2(ζm), equation (5) attains JEF solution of the form p ( x , t ) = [ - 2 σ ( 3 m 2 + 5 ) γ ( m 2 + 4 ) sn ( - σ m 2 + 4 ξ ) 2 1 + sn ( - σ m 2 + 4 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ ( 3 m 2 + 5 ) γ ( m 2 + 4 ) sn ( - σ m 2 + 4 ξ ) 2 1 + sn ( - σ m 2 + 4 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma (3{m}^2+5)}{\gamma ({m}^2+4)}\frac{\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{{m}^2+4}}\xi \right)}^2}{1+\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{{m}^2+4}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma (3{m}^2+5)}{\gamma ({m}^2+4)}\frac{\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{{m}^2+4}}\xi \right)}^2}{1+\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{{m}^2+4}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(60)provided that σ < 0 and γ > 0. The conditions (59) reduce to μ γ ( m 2 + 4 ) 2 + σ 2 ( 3 m 2 + 5 ) = 0 , 2 β σ ( 3 m 2 + 5 ) 2 + 3 γ 2 ( m 2 + 4 ) ( m 2 + 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2+4{)}^2+{\sigma }^2(3{m}^2+5)=0,& 2{\beta \sigma }(3{m}^2+5{)}^2+3{\gamma }^2({m}^2+4)({m}^2+1)=0.\end{array} $$(61)

As m approaches 1, solution (60) transforms to a soliton solution given by p ( x , t ) = [ - 16 σ 5 γ tanh ( - σ 5 ξ ) 2 1 + tanh ( - σ 5 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 16 σ 5 γ tanh ( - σ 5 ξ ) 2 1 + tanh ( - σ 5 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{16\sigma }{5\gamma }\frac{\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}{1+\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{16\sigma }{5\gamma }\frac{\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}{1+\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(62)which represents dark soliton as exhibited in Figure 3, where σ < 0 and γ > 0. From (61), we arrive at 25 μ γ + 8 σ 2 = 0 ,   64 β σ + 15 γ 2 = 0 . $$ \begin{array}{cc}25{\mu \gamma }+8{\sigma }^2=0,\enspace & 64{\beta \sigma }+15{\gamma }^2=0.\end{array} $$(63)

thumbnail Figure 3

Intensity profile of dark soliton given by solutions (62), (70) and (96) with the same parameter values as in Figure 1 except b1 = −0.5, ω1 = 0.128, ν = 0.75. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case III2. If f = 4(1 − m2), g = −4(1 − 2m2), h = −4m2, Λ(ζ) = cn2(ζ, m), equation (5) possesses JEF solution of the form p ( x , t ) = [ - 2 σ ( 8 m 2 - 5 ) γ ( 5 m 2 - 4 ) cn ( σ 5 m 2 - 4 ξ ) 2 1 + cn ( - σ 5 m 2 - 4 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ ( 8 m 2 - 5 ) γ ( 5 m 2 - 4 ) cn ( σ 5 m 2 - 4 ξ ) 2 1 + cn ( σ 5 m 2 - 4 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma (8{m}^2-5)}{\gamma (5{m}^2-4)}\frac{\mathrm{cn}{\left(\sqrt{\frac{\sigma }{5{m}^2-4}}\xi \right)}^2}{1+\mathrm{cn}{\left(\sqrt{-\frac{\sigma }{5{m}^2-4}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma (8{m}^2-5)}{\gamma (5{m}^2-4)}\frac{\mathrm{cn}{\left(\sqrt{\frac{\sigma }{5{m}^2-4}}\xi \right)}^2}{1+\mathrm{cn}{\left(\sqrt{\frac{\sigma }{5{m}^2-4}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(64)

The conditions (59) become μ γ ( 5 m 2 - 4 ) 2 + σ 2 ( m 2 - 1 ) ( 8 m 2 - 5 ) = 0 ,   2 β σ ( 8 m 2 - 5 ) 2 + 3 γ 2 ( 2 m 2 - 1 ) ( 5 m 2 - 4 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(5{m}^2-4{)}^2+{\sigma }^2({m}^2-1)(8{m}^2-5)=0,\enspace & 2{\beta \sigma }(8{m}^2-5{)}^2+3{\gamma }^2(2{m}^2-1)(5{m}^2-4)=0.\end{array} $$(65)

As m approaches 1, solution (64) converts to a soliton solution given by p ( x , t ) = [ - 6 σ γ sech ( σ ξ ) 2 1 + sech ( σ ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 6 σ γ sech ( σ ξ ) 2 1 + sech ( σ ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{6\sigma }{\gamma }\frac{\mathrm{sech}{\left(\sqrt{\sigma }\xi \right)}^2}{1+\mathrm{sech}{\left(\sqrt{\sigma }\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{6\sigma }{\gamma }\frac{\mathrm{sech}{\left(\sqrt{\sigma }\xi \right)}^2}{1+\mathrm{sech}{\left(\sqrt{\sigma }\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(66)which characterizes bright soliton as demonstrated in Figure 4, where σ > 0 and γ < 0. From (65), we obtain μ = 0 ,   6 β σ + γ 2 = 0 . $$ \begin{array}{cc}\mu =0,\enspace & 6{\beta \sigma }+{\gamma }^2=0.\end{array} $$(67)

thumbnail Figure 4

Intensity profile of bright soliton given by solution (66) with the same parameter values as in Figure 1 except c1 = −0.5, ω1 = 1.65, ν = 1.75. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case III3. If f = 1, g = 2(1 − 2m2), h = 1, Λ ( ζ ) = s n 2 ( ζ , m ) ( 1 ± cn ( ζ , m ) ) 2 $ \mathrm{\Lambda }(\zeta )=\frac{s{n}^2(\zeta,m)}{(1\pm {cn}(\zeta,m){)}^2}$, equation (5) secures JEF solution of the form p ( x , t ) = [ - 8 m 2 σ γ ( 4 m 2 + 1 ) { 1 - cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 m 2 σ γ ( 4 m 2 + 1 ) { 1 - cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{8{m}^2\sigma }{\gamma (4{m}^2+1)}\left\{1-\mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8{m}^2\sigma }{\gamma (4{m}^2+1)}\left\{1-\mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(68)provided that σ < 0 and γ > 0. The conditions (59) turn to μ γ ( 4 m 2 + 1 ) 2 + 8 σ 2 m 2 = 0 ,   64 β σ m 2 + 3 γ 2 ( 4 m 2 + 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(4{m}^2+1{)}^2+8{\sigma }^2{m}^2=0,\enspace & 64{\beta \sigma }{m}^2+3{\gamma }^2(4{m}^2+1)=0.\end{array} $$(69)

As m approaches 1, solution (68) changes to a soliton solution given by p ( x , t ) = [ - 8 σ 5 γ { 1 - sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 σ 5 γ { 1 - sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{8\sigma }{5\gamma }\left\{1-\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8\sigma }{5\gamma }\left\{1-\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(70)which represents dark soliton as shown in Figure 3, where σ < 0 and γ > 0. From (69), we reach 25 μ γ + 8 σ 2 = 0 ,   64 β σ + 15 γ 2 = 0 . $$ \begin{array}{cc}25{\mu \gamma }+8{\sigma }^2=0,\enspace & 64{\beta \sigma }+15{\gamma }^2=0.\end{array} $$(71)

Set IV. d 0 = d 3 = 2 σ ( f - 2 g + 3 h ) γ ( g - 3 h ) ,   d 1 = - 2 σ ( f - 2 g + 3 h ) γ ( g - 3 h ) ,   d 2 = 0 ,   ϵ = 2 σ g - 3 h , $$ {d}_0={d}_3=\frac{2\sigma (f-2g+3h)}{\gamma (g-3h)},\enspace {d}_1=-\frac{2\sigma (f-2g+3h)}{\gamma (g-3h)},\enspace {d}_2=0,\enspace \epsilon =2\sqrt{\frac{\sigma }{g-3h}}, $$(72)under the constraint conditions μ γ ( g - 3 h ) 2 + h σ 2 ( f - 2 g + 3 h ) = 0 , 4 β σ ( f - 2 g + 3 h ) 2 - 3 γ 2 ( g - 3 h ) ( f - g + h ) = 0 , $$ \begin{array}{c}{\mu \gamma }(g-3h{)}^2+h{\sigma }^2(f-2g+3h)=0,\\ 4{\beta \sigma }(f-2g+3h{)}^2-3{\gamma }^2(g-3h)(f-g+h)=0,\end{array} $$(73)where σ(g − 3h) > 0. Applying these outcomes to (27) and using (24) and (25), the following cases of solutions to equation (5) are extracted.

Case IV1. If f = 4, g = −4(1 + m2), h = 4m2, Λ(ζ) = sn2(ζm), equation (5) acquires JEF solution of the form p ( x , t ) = [ - 2 σ ( 5 m 2 + 3 ) γ ( 4 m 2 + 1 ) 1 1 + sn ( - σ 4 m 2 + 1 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ ( 5 m 2 + 3 ) γ ( 4 m 2 + 1 ) 1 1 + sn ( - σ 4 m 2 + 1 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma (5{m}^2+3)}{\gamma (4{m}^2+1)}\frac{1}{1+\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma (5{m}^2+3)}{\gamma (4{m}^2+1)}\frac{1}{1+\mathrm{sn}{\left(\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(74)provided that σ < 0 and γ > 0. The conditions (73) reduce to μ γ ( 4 m 2 + 1 ) 2 + σ 2 m 2 ( 5 m 2 + 3 ) = 0 ,   2 β σ ( 5 m 2 + 3 ) 2 + 3 γ 2 ( m 2 + 1 ) ( 4 m 2 + 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(4{m}^2+1{)}^2+{\sigma }^2{m}^2(5{m}^2+3)=0,\enspace & 2{\beta \sigma }(5{m}^2+3{)}^2+3{\gamma }^2({m}^2+1)(4{m}^2+1)=0.\end{array} $$(75)

As m approaches 1, solution (74) transfers to a soliton solution given by p ( x , t ) = [ - 16 σ 5 γ 1 1 + tanh ( - σ 5 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 16 σ 5 γ 1 1 + tanh ( - σ 5 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{16\sigma }{5\gamma }\frac{1}{1+\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{16\sigma }{5\gamma }\frac{1}{1+\mathrm{tanh}{\left(\sqrt{-\frac{\sigma }{5}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(76)which delineates bright soliton as presented in Figure 5, where σ < 0 and γ > 0. From (75), we catch 25 μ γ + 8 σ 2 = 0 ,   64 β σ + 15 γ 2 = 0 . $$ \begin{array}{cc}25{\mu \gamma }+8{\sigma }^2=0,\enspace & 64{\beta \sigma }+15{\gamma }^2=0.\end{array} $$(77)

thumbnail Figure 5

Intensity profile of bright soliton given by solutions (76) and (84) with the same parameter values as in Figure 3. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case IV2. If f = 4(1 − m2), g = −4(1 − 2m2), h = −4m2, Λ(ζ) = cn2(ζ, m), equation (5) has JEF solution of the form p ( x , t ) = [ - 2 σ ( 8 m 2 - 3 ) γ ( 5 m 2 - 1 ) 1 1 + cn ( σ 5 m 2 - 1 ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ ( 8 m 2 - 3 ) γ ( 5 m 2 - 1 ) 1 1 + cn ( σ 5 m 2 - 1 ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma (8{m}^2-3)}{\gamma (5{m}^2-1)}\frac{1}{1+\mathrm{cn}{\left(\sqrt{\frac{\sigma }{5{m}^2-1}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma (8{m}^2-3)}{\gamma (5{m}^2-1)}\frac{1}{1+\mathrm{cn}{\left(\sqrt{\frac{\sigma }{5{m}^2-1}}\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(78)

The conditions (73) become μ γ ( 5 m 2 - 1 ) 2 + σ 2 m 2 ( 8 m 2 - 3 ) = 0 ,   2 β σ ( 8 m 2 - 3 ) 2 + 3 γ 2 ( 2 m 2 - 1 ) ( 5 m 2 - 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(5{m}^2-1{)}^2+{\sigma }^2{m}^2(8{m}^2-3)=0,\enspace & 2{\beta \sigma }(8{m}^2-3{)}^2+3{\gamma }^2(2{m}^2-1)(5{m}^2-1)=0.\end{array} $$(79)

As m approaches 1, solution (78) converts to a soliton solution given by p ( x , t ) = [ - 5 σ 2 γ 1 1 + sech ( 1 2 σ ξ ) 2 ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 5 σ 2 γ 1 1 + sech ( 1 2 σ ξ ) 2 ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{5\sigma }{2\gamma }\frac{1}{1+\mathrm{sech}{\left(\frac{1}{2}\sqrt{\sigma }\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{5\sigma }{2\gamma }\frac{1}{1+\mathrm{sech}{\left(\frac{1}{2}\sqrt{\sigma }\xi \right)}^2}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(80)which depicts dark soliton as displayed in Figure 6, where σ > 0 and γ < 0. From (79), we obtain 16 μ γ + 5 σ 2 = 0 ,   25 β σ + 6 γ 2 = 0 . $$ \begin{array}{cc}16{\mu \gamma }+5{\sigma }^2=0,\enspace & 25{\beta \sigma }+6{\gamma }^2=0.\end{array} $$(81)

thumbnail Figure 6

Intensity profile of dark soliton given by solution (80) with the same parameter values as in Figure 4. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case IV3. If f = 1, g = 2(1 − 2m2), h = 1, Λ ( ζ ) = sn 2 ( ζ , m ) ( 1 ± cn ( ζ , m ) ) 2 $ \mathrm{\Lambda }(\zeta )=\frac{{\mathrm{sn}}^2(\zeta,m)}{(1\pm \mathrm{cn}(\zeta,m){)}^2}$, equation (5) admits JEF solution of the form p ( x , t ) = [ - 8 m 2 σ γ ( 4 m 2 + 1 ) { 1 + cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ 8 m 2 σ γ ( 4 m 2 + 1 ) { 1 + cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{8{m}^2\sigma }{\gamma (4{m}^2+1)}\left\{1+\mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[\frac{8{m}^2\sigma }{\gamma (4{m}^2+1)}\left\{1+\mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(82)provided that σ < 0 and γ > 0. The conditions (73) turn to μ γ ( 4 m 2 + 1 ) 2 + 8 σ 2 m 2 = 0 ,   64 β σ m 2 + 3 γ 2 ( 4 m 2 + 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(4{m}^2+1{)}^2+8{\sigma }^2{m}^2=0,\enspace & 64{\beta \sigma }{m}^2+3{\gamma }^2(4{m}^2+1)=0.\end{array} $$(83)

As m approaches 1, solution (82) changes to a soliton solution given by p ( x , t ) = [ - 8 σ 5 γ { 1 + sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 σ 5 γ { 1 + sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{8\sigma }{5\gamma }\left\{1+\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8\sigma }{5\gamma }\left\{1+\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(84)which illustrates bright soliton as shown in Figure 5, where σ < 0 and γ > 0. From (83), we find 25 μ γ + 8 σ 2 = 0 ,   64 β σ + 15 γ 2 = 0 . $$ \begin{array}{cc}25{\mu \gamma }+8{\sigma }^2=0,\enspace & 64{\beta \sigma }+15{\gamma }^2=0.\end{array} $$(85)

Set V. d 0 = - 4 σ ( g + τ ) γ ( 2 g + 3 τ ) ,   d 1 = d 3 = 0 ,   d 2 = - 4 σ - 2 h ( g + τ ) γ ( 2 g + 3 τ ) ,   ϵ = 4 - σ 2 g + 3 τ , $$ {d}_0=-\frac{4\sigma (g+\tau )}{\gamma (2g+3\tau )},\enspace {d}_1={d}_3=0,\enspace {d}_2=-\frac{4\sigma \sqrt{-2h(g+\tau )}}{\gamma (2g+3\tau )},\enspace \epsilon =4\sqrt{-\frac{\sigma }{2g+3\tau }}, $$(86)under the constraint conditions μ γ ( 2 g + 3 τ ) 2 + 4 τ σ 2 ( g + τ ) = 0 , 32 β σ ( g + τ ) + 3 γ 2 ( 2 g + 3 τ ) = 0 , $$ \begin{array}{l}{\mu \gamma }(2g+3\tau {)}^2+4\tau {\sigma }^2(g+\tau )=0,\\ 32{\beta \sigma }(g+\tau )+3{\gamma }^2(2g+3\tau )=0,\end{array} $$(87)where τ = g 2 - 4 fh $ \tau =\sqrt{{g}^2-4{fh}}$. Applying these outcomes to (27) and using (24) and (25), the following cases of solutions to equation (5) are extracted.

Case V1. If f = 4, g = −4(1 + m2), h = 4m2, Λ(ζ) = sn2(ζ, m), equation (5) captures JEF solution of the form p ( x , t ) = [ 8 σ γ ( m 2 - 5 ) { 1 ± sn ( 2 - σ m 2 - 5 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ 8 σ γ ( m 2 - 5 ) { 1 ± sn ( 2 - σ m 2 - 5 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[\frac{8\sigma }{\gamma ({m}^2-5)}\left\{1\pm \mathrm{sn}\left(2\sqrt{-\frac{\sigma }{{m}^2-5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[\frac{8\sigma }{\gamma ({m}^2-5)}\left\{1\pm \mathrm{sn}\left(2\sqrt{-\frac{\sigma }{{m}^2-5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(88)provided that σ > 0 and γ < 0. The conditions (87) reduce to μ γ ( m 2 - 5 ) 2 - 8 σ 2 ( m 2 - 1 ) = 0 ,   64 β σ - 3 γ 2 ( m 2 - 5 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2-5{)}^2-8{\sigma }^2({m}^2-1)=0,\enspace & 64{\beta \sigma }-3{\gamma }^2({m}^2-5)=0.\end{array} $$(89)

As m approaches 1, solution (88) with (+) sign degenerates to a soliton solution given by p ( x , t ) = [ - 2 σ γ { 1 + tanh ( σ ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ γ { 1 + tanh ( σ ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma }{\gamma }\left\{1+\mathrm{tanh}\left(\sqrt{\sigma }\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma }{\gamma }\left\{1+\mathrm{tanh}\left(\sqrt{\sigma }\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(90)which describes dark soliton as presented in Figure 7, while solution (88) with (−) sign collapses to a soliton solution given by p ( x , t ) = [ - 2 σ γ { 1 - tanh ( σ ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ γ { 1 - tanh ( σ ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma }{\gamma }\left\{1-\mathrm{tanh}\left(\sqrt{\sigma }\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma }{\gamma }\left\{1-\mathrm{tanh}\left(\sqrt{\sigma }\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(91)which characterizes bright soliton as plotted in Figure 8, where σ > 0 and γ < 0. From (89), we catch μ = 0 ,   16 β σ + 3 γ 2 = 0 . $$ \begin{array}{cc}\mu =0,\enspace & 16{\beta \sigma }+3{\gamma }^2=0.\end{array} $$(92)

thumbnail Figure 7

Intensity profile of dark soliton given by solutions (90) and (100) with the same parameter values as in Figure 4. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

thumbnail Figure 8

Intensity profile of bright soliton given by solutions (91) and (101) with the same parameter values as in Figure 4. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

Case V2. If f = 4(1 − m2), g = −4(1 − 2m2), h = −4m2, Λ(ζ) = cn2(ζm), equation (5) possesses JEF solution of the form p ( x , t ) = [ - 8 σ m 2 γ ( 4 m 2 + 1 ) { 1 ± cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 σ m 2 γ ( 4 m 2 + 1 ) { 1 ± cn ( 2 - σ 4 m 2 + 1 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{8\sigma {m}^2}{\gamma (4{m}^2+1)}\left\{1\pm \mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8\sigma {m}^2}{\gamma (4{m}^2+1)}\left\{1\pm \mathrm{cn}\left(2\sqrt{-\frac{\sigma }{4{m}^2+1}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(93)provided that σ < 0 and γ > 0. The conditions (87) become μ γ ( 4 m 2 + 1 ) 2 + 8 σ 2 m 2 = 0 ,   64 β σ m 2 + 3 γ 2 ( 4 m 2 + 1 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }(4{m}^2+1{)}^2+8{\sigma }^2{m}^2=0,\enspace & 64{\beta \sigma }{m}^2+3{\gamma }^2(4{m}^2+1)=0.\end{array} $$(94)

As m approaches 1, solution (93) with (+) sign turns into a soliton solution given by p ( x , t ) = [ - 8 σ 5 γ { 1 + sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 σ 5 γ { 1 + sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{8\sigma }{5\gamma }\left\{1+\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8\sigma }{5\gamma }\left\{1+\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(95)which represents bright soliton as demonstrated in Figure 5, while solution (93) with (−) sign becomes a soliton solution given by p ( x , t ) = [ - 8 σ 5 γ { 1 - sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 8 σ 5 γ { 1 - sech ( 2 - σ 5 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) . $$ \begin{array}{l}p(x,t)={\left[-\frac{8\sigma }{5\gamma }\left\{1-\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{8\sigma }{5\gamma }\left\{1-\mathrm{sech}\left(2\sqrt{-\frac{\sigma }{5}}\xi \right)\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })}.\end{array} $$(96)which depictes dark soliton as presented in Figure 3, where σ < 0 and γ > 0. From (94), we find 25 μ γ + 8 σ 2 = 0 ,   64 β σ + 15 γ 2 = 0 . $$ \begin{array}{cc}25{\mu \gamma }+8{\sigma }^2=0,\enspace & 64{\beta \sigma }+15{\gamma }^2=0.\end{array} $$(97)

Case V3. If f = 1, g = 2(1 − 2m2), h = 1, Λ ( ζ ) = sn 2 ( ζ , m ) ( 1 ± cn ( ζ , m ) ) 2 $ \mathrm{\Lambda }(\zeta )=\frac{{\mathrm{sn}}^2(\zeta,m)}{(1\pm \mathrm{cn}(\zeta,m){)}^2}$, equation (5) attains JEF solution of the form p ( x , t ) = [ - 2 σ ( m - n ) γ ( m 2 - 3 mn + n 2 ) { ( m - n ) ± 1 - cn ( 2 σ m 2 - 3 mn + n 2 ξ ) 1 + cn ( 2 σ m 2 - 3 mn + n 2 ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ ( m - n ) γ ( m 2 - 3 mn + n 2 ) { ( m - n ) ± 1 - cn ( 2 σ m 2 - 3 mn + n 2 ξ ) 1 + cn ( 2 σ m 2 - 3 mn + n 2 ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma (m-n)}{\gamma ({m}^2-3{mn}+{n}^2)}\left\{(m-n)\pm \sqrt{\frac{1-\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2-3{mn}+{n}^2}}\xi \right)}{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2-3{mn}+{n}^2}}\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma (m-n)}{\gamma ({m}^2-3{mn}+{n}^2)}\left\{(m-n)\pm \sqrt{\frac{1-\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2-3{mn}+{n}^2}}\xi \right)}{1+\mathrm{cn}\left(2\sqrt{\frac{\sigma }{{m}^2-3{mn}+{n}^2}}\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(98)where n = m 2 - 1 $ n=\sqrt{{m}^2-1}$. The conditions (87) turn to μ γ ( m 2 - 3 mn + n 2 ) 2 - 2 σ 2 mn ( m - n ) 2 = 0 ,   16 β σ ( m - n ) 2 + 3 γ 2 ( m 2 - 3 mn + n 2 ) = 0 . $$ \begin{array}{cc}{\mu \gamma }({m}^2-3{mn}+{n}^2{)}^2-2{\sigma }^2{mn}(m-n{)}^2=0,\enspace & 16{\beta \sigma }(m-n{)}^2+3{\gamma }^2({m}^2-3{mn}+{n}^2)=0.\end{array} $$(99)

As m approaches 1, solution (98) with (+) sign switches to a soliton solution given by p ( x , t ) = [ - 2 σ γ { 1 + 1 - sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ γ { 1 + 1 - sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma }{\gamma }\left\{1+\sqrt{\frac{1-\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma }{\gamma }\left\{1+\sqrt{\frac{1-\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(100)which delineates dark soliton as shown in Figure 7, while solution (98) with (−) sign mutates to a soliton solution given by p ( x , t ) = [ - 2 σ γ { 1 - 1 - sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) } ] 1 2 e i ( ϕ 1 ( ξ ) - ω 1 t α α ) , q ( x , t ) = λ [ - 2 σ γ { 1 - 1 - sech ( 2 σ ξ ) 1 + sech ( 2 σ ξ ) } ] 1 2 e i ( ϕ 2 ( ξ ) - ω 2 t α α ) , $$ \begin{array}{l}p(x,t)={\left[-\frac{2\sigma }{\gamma }\left\{1-\sqrt{\frac{1-\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_1(\xi )-{\omega }_1\frac{{t}^{\alpha }}{\alpha })},\\ q(x,t)=\lambda {\left[-\frac{2\sigma }{\gamma }\left\{1-\sqrt{\frac{1-\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}{1+\mathrm{sech}\left(2\sqrt{\sigma }\xi \right)}}\right\}\right]}^{\frac{1}{2}}{e}^{i({\phi }_2(\xi )-{\omega }_2\frac{{t}^{\alpha }}{\alpha })},\end{array} $$(101)which represents bright soliton as displayed in Figure 8, where σ > 0 and γ < 0. From (99), we catch μ = 0 ,   16 β σ + 3 γ 2 = 0 . $$ \begin{array}{cc}\mu =0,\enspace & 16{\beta \sigma }+3{\gamma }^2=0.\end{array} $$(102)

5 Stability analysis

The linear stability analysis technique is discussed here to study the modulation instability of the space-time fractional Kaup-Newell equation (5) in birefringent fiber. Accordingly, we assume the perturbed steady-state solutions of the form p ( x , t ) = [ δ + Υ ( x , t ) ] e t , q ( x , t ) = [ δ + Ω ( x , t ) ] e t , $$ \begin{array}{l}p(x,t)=\left[\sqrt{\delta }+\mathrm{{\rm Y}}(x,t)\right]{e}^{{i\delta t}},\\ q(x,t)=\left[\sqrt{\delta }+\mathrm{\Omega }(x,t)\right]{e}^{{i\delta t}},\end{array} $$(103)where δ is the normalized optical power while Υ(xt) and Ω(xt) are small perturbations such that both Υ and Ω are ≪δ. To examine the effect of perturbations Υ and Ω, the method of linear stability analysis is employed. Substituting (103) into system (5), one can come to the linearized disturbance equations with respect to Υ and Ω as α Υ t α + i ( δ Υ + a 1 2 α Υ x 2 α ) + b 1 δ ( 2 α Υ x α + α Υ * x α ) + c 1 δ ( 2 α Ω x α + α Ω * x α ) = 0 , α Ω t α + i ( δ Ω + a 2 2 α Ω x 2 α ) + b 2 δ ( 2 α Ω x α + α Ω * x α ) + c 2 δ ( 2 α Υ x α + α Υ * x α ) = 0 , $$ \begin{array}{l}\frac{{\partial }^{\alpha }\mathrm{{\rm Y}}}{\partial {t}^{\alpha }}+i\left(\delta \mathrm{{\rm Y}}+{a}_1\frac{{\partial }^{2\alpha }\mathrm{{\rm Y}}}{\partial {x}^{2\alpha }}\right)+{b}_1\delta \left(2\frac{{\partial }^{\alpha }\mathrm{{\rm Y}}}{\partial {x}^{\alpha }}+\frac{{\partial }^{\alpha }{\mathrm{{\rm Y}}}^{\mathrm{*}}}{\partial {x}^{\alpha }}\right)+{c}_1\delta \left(2\frac{{\partial }^{\alpha }\mathrm{\Omega }}{\partial {x}^{\alpha }}+\frac{{\partial }^{\alpha }{\mathrm{\Omega }}^{\mathrm{*}}}{\partial {x}^{\alpha }}\right)=0,\\ \frac{{\partial }^{\alpha }\mathrm{\Omega }}{\partial {t}^{\alpha }}+i\left(\delta \mathrm{\Omega }+{a}_2\frac{{\partial }^{2\alpha }\mathrm{\Omega }}{\partial {x}^{2\alpha }}\right)+{b}_2\delta \left(2\frac{{\partial }^{\alpha }\mathrm{\Omega }}{\partial {x}^{\alpha }}+\frac{{\partial }^{\alpha }{\mathrm{\Omega }}^{\mathrm{*}}}{\partial {x}^{\alpha }}\right)+{c}_2\delta \left(2\frac{{\partial }^{\alpha }\mathrm{{\rm Y}}}{\partial {x}^{\alpha }}+\frac{{\partial }^{\alpha }{\mathrm{{\rm Y}}}^{\mathrm{*}}}{\partial {x}^{\alpha }}\right)=0,\end{array} $$(104)where * denotes the conjugate. As both equations in (104) have the same structures, the modulation instability analysis of the perturbations Υ(xt) and Ω(xt) can be examined using the same way. Hence, we deal with the first equation in (104) to study the perturbation evolution. Suppose that the coupled equations has solution expressed as Υ ( x , t ) = ρ e i ( κ ̃ x α α - ω ̃ t α α ) + η e - i ( κ ̃ x α α - ω ̃ t α α ) , Ω ( x , t ) = ρ e i ( κ ̃ x α α - ω ̃ t α α ) + η e - i ( κ ̃ x α α - ω ̃ t α α ) , $$ \begin{array}{l}\mathrm{{\rm Y}}(x,t)=\rho {e}^{i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)}+\eta {e}^{-i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)},\\ \mathrm{\Omega }(x,t)=\rho {e}^{i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)}+\eta {e}^{-i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)},\end{array} $$(105) Υ * ( x , t ) = ρ e - i ( κ ̃ x α α - ω ̃ t α α ) + η e i ( κ ̃ x α α - ω ̃ t α α ) , Ω * ( x , t ) = ρ e - i ( κ ̃ x α α - ω ̃ t α α ) + η e i ( κ ̃ x α α - ω ̃ t α α ) , $$ \begin{array}{l}{\mathrm{{\rm Y}}}^{\mathrm{*}}(x,t)=\rho {e}^{-i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)}+\eta {e}^{i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)},\\ {\mathrm{\Omega }}^{\mathrm{*}}(x,t)=\rho {e}^{-i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)}+\eta {e}^{i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)},\end{array} $$(106)where ω ̃ $ \tilde{\omega }$ and κ ̃ $ \tilde{\kappa }$ are the frequency of perturbation and normalized wave numbers, respectively. Plugging ansatz (105) and (106) into the first equation of (104) and separating the coefficients of exp { i ( κ ̃ x α α - ω ̃ t α α ) } $ \mathrm{exp}\{i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)\}$ and exp { - i ( κ ̃ x α α - ω ̃ t α α ) } $ \mathrm{exp}\{-i\left(\tilde{\kappa }\frac{{x}^{\alpha }}{\alpha }-\tilde{\omega }\frac{{t}^{\alpha }}{\alpha }\right)\}$, this induces a pair of equations in ρ and η as ρ ( ω ̃ + a 1 κ ̃ 2 ) - δ ( ρ + κ ̃ ( η + 2 ρ ) ( b 1 + c 1 ) ) = 0 , η ( ω ̃ - a 1 κ ̃ 2 ) + δ ( η - κ ̃ ( ρ + 2 η ) ( b 1 + c 1 ) ) = 0 . $$ \begin{array}{l}\rho (\tilde{\omega }+{a}_1{\tilde{\kappa }}^2)-\delta (\rho +\tilde{\kappa }(\eta +2\rho )({b}_1+{c}_1))=0,\\ \eta (\tilde{\omega }-{a}_1{\tilde{\kappa }}^2)+\delta (\eta -\tilde{\kappa }(\rho +2\eta )({b}_1+{c}_1))=0.\end{array} $$(107)

The system (107) creates the coefficient matrix of ρ and η as [ ω ̃ + a 1 κ ̃ 2 - δ ( 1 + 2 κ ̃ ( b 1 + c 1 ) ) - δ κ ̃ ( b 1 + c 1 ) - δ κ ̃ ( b 1 + c 1 ) ω ̃ - a 1 κ ̃ 2 + δ ( 1 - 2 κ ̃ ( b 1 + c 1 ) ) ] [ ρ η ] = [ 0 0 ] . $$ \left[\begin{array}{cc}\tilde{\omega }+{a}_1{\tilde{\kappa }}^2-\delta (1+2\tilde{\kappa }({b}_1+{c}_1))& -\delta \tilde{\kappa }({b}_1+{c}_1)\\ -\delta \tilde{\kappa }({b}_1+{c}_1)& \tilde{\omega }-{a}_1{\tilde{\kappa }}^2+\delta (1-2\tilde{\kappa }({b}_1+{c}_1))\end{array}\right]\left[\begin{array}{c}\rho \\ \eta \end{array}\right]=\left[\begin{array}{c}0\\ 0\end{array}\right]. $$(108)

To ensure that the coefficient matrix having nontrivial solution, the determinant has to be vanish. Consequently, we obtain the dispersion relation in the form ( ω ̃ - 2 δ κ ̃ ( b 1 + c 1 ) ) 2 - δ 2 κ ̃ 2 ( b 1 + c 1 ) 2 - ( δ - a 1 κ ̃ 2 ) 2 = 0 . $$ (\tilde{\omega }-2\delta \tilde{\kappa }({b}_1+{c}_1){)}^2-{\delta }^2{\tilde{\kappa }}^2({b}_1+{c}_1{)}^2-(\delta -{a}_1{\tilde{\kappa }}^2{)}^2=0. $$(109)

The solution of the dispersion relation (109) for ω ̃ $ \tilde{\omega }$ provides ω ̃ = 2 δ κ ̃ ( b 1 + c 1 ) ± δ 2 κ ̃ 2 ( b 1 + c 1 ) 2 + ( δ - a 1 κ ̃ 2 ) 2 . $$ \tilde{\omega }=2\delta \tilde{\kappa }({b}_1+{c}_1)\pm \sqrt{{\delta }^2{\tilde{\kappa }}^2({b}_1+{c}_1{)}^2+(\delta -{a}_1{\tilde{\kappa }}^2{)}^2}. $$(110)

This expression reveals the situation of the steady-state stability. One can clearly note that δ 2 κ ̃ 2 ( b 1 + c 1 ) 2 + ( δ - a 1 κ ̃ 2 ) 2 $ {\delta }^2{\tilde{\kappa }}^2({b}_1+{c}_1{)}^2+(\delta -{a}_1{\tilde{\kappa }}^2{)}^2$ is always ≥0. This means that ω ̃ $ \tilde{\omega }$ is real for all values of wave numbers κ ̃ $ \tilde{\kappa }$. Hence, the steady state is stable against the wave number perturbation. The dispersion relation that shows the depends of perturbation frequency on the normalized wave number is illustrated in Figure 9.

thumbnail Figure 9

The dispersion relation ω ̃ = ω ̃ ( κ ̃ ) $ \tilde{\omega }=\tilde{\omega }(\tilde{\kappa })$ between frequency ω ̃ $ \tilde{\omega }$ and wave number κ ̃ $ \tilde{\kappa }$ given in (110).

6 Results and discussion

The utilized scheme has been effective on generating optical solitons. Although this work sheds light only on chirped bright and dark solitons, there are abundant types of those soliton structures that are derived for the KNE in birefringent fiber. The dynamical behaviors of chirped solitons due to the effect of fractional order derivatives, α, are displayed through the graphical representations. The profile of soliton intensity is depicted in 2 and 3 dimensions with three distinct values of α which are 0.7, 0.8, 1.0. It is found that the fractional order derivative affects remarkably the evolution of chirped bright and dark solitons. In addition to this, the corresponding chirp to each soliton solution is also presented with integer order derivative. The parameter values are carefully selected to fulfil the constraint conditions for the existence of each soliton solution.

We observed that solutions (34), (42), (52) have the same behavior which represent a profile of chirped dark soliton as presented in Figure 1 with parameter values a1 = a2 = b1 = b2 = c1 = c2 = ω1 = 0.5, ν = 1.25, λ = 1.5. Moreover, solutions (38), (48), (56) exhibit the shape of bright soliton wave as shown in Figure 2 with parameter values a1 = 0.93, a2 = b2 = −0.5, b1 = c1 = c2 = 0.5, ω1 = 1.5, ν = 0.75, λ = 1.5. Additionally, it is noted that solutions (62), (70), (96) describe the variation of dark soliton as plotted in Figure 3 with the same parameter values as in Figure 1 except b1 = −0.5, ω1 = 0.128, ν = 0.75. One can obviously see that Figure 4 illustrates the profile of chirped bright soliton for solution (66) with the same parameter values as in Figure 1 except c1 = −0.5, ω1 = 1.65, ν = 1.75. In Figure 5, the graph delineates bright soliton structure for solutions (76), (84), (95) which is depicted with the same parameter values as in Figure 3. Further to this, Figure 6 demonstrates the shape of dark soliton wave for solution (80) which is drawn with the same parameter values as in Figure 4. In Figure 7, the plot displays the profile of dark soliton for solutions (90) and (100) while the plot in Figure 8 characterizes bright soliton wave for solutions (91) and (101), where both graphs are drawn with the same parameter values as in Figure 4.

The effect on nonlinearity parameters b1, c1, b2, c2 on the soliton propagation is detected by taking the bright soliton given by solution (66) as example. It is obviously seen from Figure 10 that b1 causes noteworthy variations on the soliton behaviors, where the increase in b1 value reduces the amplitude and expands the width of wave. The most negative value of c1 decreases both of the soliton amplitude and width. Moreover, the increment of b2 leads to a reduction in the soliton amplitude with almost no change in its width. The parameter c2 has nearly a negligible influence in the pulse propagation.

thumbnail Figure 10

Nonlinearity effect on the chirped bright soliton given by solution (66) with various values of parameters b1, c1, b2, c2. (a) |p|2 with distinct values of b1; (b) |p|2 with distinct values of c1; (c) |p|2 with distinct values of b2; (d) |p|2 with distinct values of c2.

Overall, one can see that the chirped bright and dark optical solitons retrieved here experience different evolutions based on the impact of fractional order derivative and diversity of model parameter values.

7 Conclusion

We have studied chirped bright and dark solitons of fractional-order Kaup-Newell equation (KNE) in birefringent fiber. The employed scheme which depends on alternative form of Jacobi elliptic equation is found to be powerful on deriving optical solitons. Various types of chirped bright and dark solitons with their associated chirping are extracted which present distinct wave profiles. The behavior of obtained optical solitons is noted to undergo noticeable variations due to the change in physical parameters. It is detected that the pulse propagation is handled by the change of the nonlinearity amount, where both of soliton amplitude and width suffer inconstancy. By means of the linear stability analysis, the modulation instability of the discussed model is diagnosed and it displays that all created solutions are stable. The obtained results can be used to maintain the balance between the nonlinearities and the dispersive terms. Moreover, it can be benefited in attenuating signal distortion and pulse broadening in optical fibers. In future work, the KNE can be scrutinized in presence of Hamiltonian perturbation terms and in addition to different types of nonlinear refractive index. Further to this, there are significant aspects that can be scrutinized such as bifurcation analysis, multi-soliton solutions and others. The discussion of such physical features can introduce several effects on the wave structures that may be exploited to improve the different applications in the field of birefringent fibers.

Funding

The authors state no funding involved.

Conflicts of interest

The authors declare that they have no conflict of interest to disclose.

Data availability statement

The authors declare that the data supporting the findings of this study are available within the paper.

Author contribution statement

All authors equally contributed to this work and approved the final version of the manuscript.

References

  1. Arshad M, Seadawy AR, Lu D, Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications, Superlattices Microstruct. 112, 422 (2017). https://doi.org/10.1016/j.spmi.2017.09.054. [NASA ADS] [CrossRef] [Google Scholar]
  2. Al-Ghafri KS, Krishnan EV, Khan S, Biswas A, Optical bullets and their modulational instability analysis, Appl. Sci. 12(18), 9221 (2022). https://doi.org/10.3390/app12189221. [CrossRef] [Google Scholar]
  3. Ding CQC, Zhu LQW, Triki H, Zhou Q, Four-wave mixing induced general localized waves for a coupled generalized nonlinear Schrödinger system, Phys. D Nonlinear Phenom. 464, 134191 (2024). https://doi.org/10.1016/j.physd.2024.134191. [NASA ADS] [CrossRef] [Google Scholar]
  4. Wang J, Shehzad K, Arshad M, Seadawy AR, Physical constructions of kink, anti-kink optical solitons and other solitary wave solutions for the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity, Opt. Quantum Electron. 56(5), 758 (2024). https://doi.org/10.1007/s11082-024-06481-w. [NASA ADS] [CrossRef] [Google Scholar]
  5. Shukla P, Eliasson B, Formation and dynamics of dark solitons and vortices in quantum electron plasmas, Phys. Rev. Lett. 96(24), 245001 (2006). https://doi.org/10.1103/PhysRevLett.96.245001. [NASA ADS] [CrossRef] [Google Scholar]
  6. Sabry R, Moslem W, Haas F, Ali S, Shukla PK, Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma, Phys. Plasmas 15(12), 122308 (2008). https://doi.org/10.1063/1.3037265. [NASA ADS] [CrossRef] [Google Scholar]
  7. Ali R, Zhang Z, Ahmad H, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quantum Electron. 56(5), 838 (2024). https://doi.org/10.1007/s11082-024-06370-2. [NASA ADS] [CrossRef] [Google Scholar]
  8. Voinescu R, Tai JQSB, Smalyukh II, Hopf solitons in helical and conical backgrounds of chiral magnetic solids, Phys. Rev. Lett. 125(5), 057201 (2020). https://doi.org/10.1103/PhysRevLett.125.057201. [NASA ADS] [CrossRef] [Google Scholar]
  9. Lan ZQZ, Bound-state solitons in three-wave resonant interactions, Nonlinear Dyn. 112(22), 20173 (2024). https://doi.org/10.1007/s11071-024-10121-z. [NASA ADS] [CrossRef] [Google Scholar]
  10. Zhong Y, Zhou Q, Abundant vortex dynamics in spin-1 Bose-Einstein condensates induced by rashba spin-orbit coupling, Chaos Solit. Fract. 188, 115590 (2024). https://doi.org/10.1016/j.chaos.2024.115590. [NASA ADS] [CrossRef] [Google Scholar]
  11. Liu FQY, Triki H, Zhou Q, Oscillatory nondegenerate solitons in spin–orbit coupled spin-1/2 Bose-Einstein condensates with weak raman coupling, Chaos Solit. Fract. 186, 115257 (2024). https://doi.org/10.1016/j.chaos.2024.115257. [CrossRef] [Google Scholar]
  12. Liu FQY, Xu SQY, Triki H, Choudhuri A, Zhou Q, Spatiotemporal modulated solitons in a quasi-one-dimensional spin-1 Bose-Einstein condensates, Chaos Solit. Fract. 183, 114947 (2024). https://doi.org/10.1016/j.chaos.2024.114947. [CrossRef] [Google Scholar]
  13. Zhong Y, Triki H, Zhou Q, Dynamics of ring dark solitons and the following vortices in spin-1 Bose-Einstein condensates, Chin. Phys. Lett. 41, 070501 (2024). https://doi.org/10.1088/0256-307X/41/7/070501. [NASA ADS] [CrossRef] [Google Scholar]
  14. Zhong Y, Triki H, Zhou Q, Bright and kink solitons of time-modulated cubic–quintic–septic–nonic nonlinear Schrödinger equation under space-time rotated PT-symmetric potentials, Nonlinear Dyn. 112(2), 1349 (2024). https://doi.org/10.1007/s11071-023-09116-z. [NASA ADS] [CrossRef] [Google Scholar]
  15. Liu HQT, Liu FQY, Mirzazadeh M, Zhou Q, Oscillating multi-node solitons in spin-orbit coupled spin-1 Bose-Einstein condensates, Eur. Phys. J. Plus 139(7), 652 (2024). https://doi.org/10.1140/epjp/s13360-024-05406-6. [NASA ADS] [CrossRef] [Google Scholar]
  16. Zhong Y, Yu K, Sun Y, Triki H, Zhou Q, Stability of solitons in bose–einstein condensates with cubic-quintic-septic nonlinearity and non-PT-symmetric complex potentials, Eur. Phys. J. Plus 139(2), 119 (2024). https://doi.org/10.1140/epjp/s13360-024-04930-9. [NASA ADS] [CrossRef] [Google Scholar]
  17. Mani Rajan MS, in Industrial Applications of Nanocrystals. Micro and Nano Technologies, 2022, edited by Mallakpour S, Hussain CM (Elsevier, Amsterdam), p. 3. https://doi.org/10.1016/B978-0-12-824024-3.00017-8. [CrossRef] [Google Scholar]
  18. Menyuk CR, Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes, Opt. Lett. 12(8), 614 (1987). https://doi.org/10.1364/OL.12.000614. [NASA ADS] [CrossRef] [Google Scholar]
  19. Menyuk CR, Solitons in birefringent optical fibers and polarization mode dispersion, Opt. Commun. 550, 129841 (2024). https://doi.org/10.1016/j.optcom.2023.129841. [NASA ADS] [CrossRef] [Google Scholar]
  20. Liu FQY, Triki H, Zhou Q, Optical nondegenerate solitons in a birefringent fiber with a 35 degree elliptical angle, Opt. Express 32(2), 2746 (2024). https://doi.org/10.1364/OE.512116. [NASA ADS] [CrossRef] [Google Scholar]
  21. Zaabat S, Zaabat M, Lu Z, Triki H, Zhou Q, Propagation of solitons in inhomogeneous birefringent nonlinear dispersive media, Results Phys. 54, 107144 (2023). https://doi.org/10.1016/j.rinp.2023.107144. [CrossRef] [Google Scholar]
  22. Fu L, Li J, Yang H, Dong H, Han X, Optical solitons in birefringent fibers with the generalized coupled space–time fractional non-linear Schrödinger equations, Front. Phys. 11, 1108505 (2023). https://doi.org/10.3389/fphy.2023.1108505. [NASA ADS] [CrossRef] [Google Scholar]
  23. Li Z, Fan W, Miao F, Chaotic pattern, phase portrait, sensitivity and optical soliton solutions of coupled conformable fractional fokas-lenells equation with spatio-temporal dispersion in birefringent fibers, Results Phys. 47, 106386 (2023). https://doi.org/10.1016/j.rinp.2023.106386. [CrossRef] [Google Scholar]
  24. Mahmood M, Chirped optical solitons in single-mode birefringent fibers, Appl. Opt. 35(34), 6844 (1996). https://doi.org/10.1364/AO.35.006844. [NASA ADS] [CrossRef] [Google Scholar]
  25. Triki H, Zhou Q, Liu W, Biswas A, Moraru L, Yıldırım Y, Alshehri HM, Belic MR, Chirped optical soliton propagation in birefringent fibers modeled by coupled fokas-lenells system, Chaos Solit. Fractals 155, 111751 (2022). https://doi.org/10.1016/j.chaos.2021.111751. [Google Scholar]
  26. Xiao Y, Zhang J, Duan H, Transmission stability of chirped bright vector quasi-solitons in birefringent fiber system with nonlinear gain, Optik 212, 164751 (2020). https://doi.org/10.1016/j.ijleo.2020.164751. [NASA ADS] [CrossRef] [Google Scholar]
  27. Xiao Y, Zhang J, He Q, Transmission stability of chirped dark vector quasi-solitons in birefringent fiber system with nonlinear gain, Opt. Appl. L1(1), 51 (2021). https://doi.org/10.37190/oa210104. [Google Scholar]
  28. Yıldırım Y, Optical solitons to sasa-satsuma model in birefringent fibers with modified simple equation approach, Optik 184, 197 (2019). https://doi.org/10.1016/j.ijleo.2019.03.022. [CrossRef] [Google Scholar]
  29. Raza N, Zubair A, Dipole and combo optical solitons in birefringent fibers in the presence of four-wave mixing, Commun. Theor. Phys. 71(6), 723 (2019). https://doi.org/10.1088/0253-6102/71/6/723. [NASA ADS] [CrossRef] [Google Scholar]
  30. González-Gaxiola O, Biswas A, Yildirim Y, Alshehri HM, Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–adomian decomposition, Ukr. J. Phys. Opt. 23(2), 68 (2022). https://doi.org/10.3116/16091833/23/2/68/2022. [CrossRef] [Google Scholar]
  31. Asma M, Biswas A, Ekici M, Gonzalez-Gaxiola O, Alzahrani AK, Belic MR, Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by traveling waves and adomian decomposition, Opt. Quantum Electron. 53, 1 (2021). https://doi.org/10.1007/s11082-021-02778-2. [NASA ADS] [CrossRef] [Google Scholar]
  32. Samir I, Badra N, Ahmed HM, Arnous AH, Solitons in birefringent fibers for cgl equation with hamiltonian perturbations and kerr law nonlinearity using modified extended direct algebraic method. Commun. Nonlinear Sci, Numer. Simul. 102, 105945 (2021). https://doi.org/10.1016/j.cnsns.2021.105945. [CrossRef] [Google Scholar]
  33. Rehman S, Ahmad J, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, Alex. Eng. J. 60(1), 1339 (2021). https://doi.org/10.1016/j.aej.2020.10.055. [CrossRef] [Google Scholar]
  34. Han T, Li Z, Yuan J, Optical solitons and single traveling wave solutions of biswas-arshed equation in birefringent fibers with the beta-time derivative, AIMS Math. 7(8), 15282 (2022). https://doi.org/10.3934/math.2022837. [CrossRef] [Google Scholar]
  35. Zayed EM, Alngar ME, Shohib RM, Biswas A, Triki H, Yıldırım Y, Alshomrani AS, Alshehri HM, Cubic-quartic optical solitons in birefringent fibers with Sasa-Satsuma equation, Optik 261, 169230 (2022). https://doi.org/10.1016/j.ijleo.2022.169230. [NASA ADS] [CrossRef] [Google Scholar]
  36. SQU Rehman, Ahmad J, Investigation of exact soliton solutions to chen–lee–liu equation in birefringent fibers and stability analysis, J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.026. [Google Scholar]
  37. Uddin M, Hafez M, Optical wave phenomena in birefringent fibers described by space-time fractional cubic-quartic nonlinear Schrödinger equation with the sense of beta and conformable derivative, Adv. Math. Phys. 2022(1), 7265164 (2022). https://doi.org/10.1155/2022/7265164. [CrossRef] [Google Scholar]
  38. Muniyappan A, Manikandan K, Seadawy AR, Parasuraman E, Dynamical characteristics and physical structure of cusp-like singular solitons in birefringent fibers, Results Phys. 56, 107241 (2024). https://doi.org/10.1016/j.rinp.2023.107241. [CrossRef] [Google Scholar]
  39. Triki H, Kruglov VI, Generation of solitons and periodic wave trains in birefringent optical fibers, Chaos Solit. Fractals 186, 115300 (2024). https://doi.org/10.1016/j.chaos.2024.115300. [NASA ADS] [CrossRef] [Google Scholar]
  40. Triki H, Kruglov VI, Propagation of m-shaped and w-shaped similaritons in birefringent tapered graded-index nonlinear fiber amplifiers, Opt. Commun. 574, 131054 (2025). https://doi.org/10.1016/j.optcom.2024.131054. [NASA ADS] [CrossRef] [Google Scholar]
  41. Kaup DJ, Newell AC, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19(4), 798 (1978). https://doi.org/10.1063/1.523737. [NASA ADS] [CrossRef] [Google Scholar]
  42. Kaup DJ, Newell AC, Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates, Phys. Rev. B 18(10), 5162 (1978). https://doi.org/10.1103/PhysRevB.18.5162. [NASA ADS] [CrossRef] [Google Scholar]
  43. Kudryashov NA, Lavrova SF, Traveling wave solutions of the derivative nonlinear Schrödinger hierarchy, Appl. Math. Comput. 477, 128802 (2024). https://doi.org/10.1016/j.amc.2024.128802. [Google Scholar]
  44. Kudryashov NA, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics 11(10), 2304 (2023). https://doi.org/10.3390/math11102304. [CrossRef] [Google Scholar]
  45. Biswas A, Soliton perturbation theory for alfven waves in plasmas, Phys. Plasmas 12(2), 022306 (2005). https://doi.org/10.1063/1.1848109. [NASA ADS] [CrossRef] [Google Scholar]
  46. Arshed S, Biswas A, Abdelaty M, Zhou Q, Moshokoa SP, Belic M, Sub pico-second chirp-free optical solitons with kaup-newell equation using a couple of strategic algorithms, Optik 172, 766 (2018). https://doi.org/10.1016/j.ijleo.2018.07.082. [CrossRef] [Google Scholar]
  47. Biswas A, Yıldırım Y, Yaşar E, Zhou Q, Moshokoa SP, Belic M, Sub pico-second pulses in mono-mode optical fibers with kaup–newell equation by a couple of integration schemes, Optik 167, 121 (2018). https://doi.org/10.1016/j.ijleo.2018.04.063. [CrossRef] [Google Scholar]
  48. Triki H, Biswas A, Zhou Q, Moshokoa SP, Belic M, Chirped envelope optical solitons for kaup–newell equation, Optik 177, 1 (2019). https://doi.org/10.1016/j.ijleo.2018.09.137. [CrossRef] [Google Scholar]
  49. Salas AH, El-Tantawy S, Youssef AAAQR, New solutions for chirped optical solitons related to kaup-newell equation: Application to plasma physics, Optik 218, 165203 (2020). https://doi.org/10.1016/j.ijleo.2020.165203. [NASA ADS] [CrossRef] [Google Scholar]
  50. Qian X, Lu D, Arshad M, Shehzad K, Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications, Chinese Physics B 30(2), 020201 (2021). https://doi.org/10.1088/1674-1056/abbbfc. [NASA ADS] [CrossRef] [Google Scholar]
  51. Arshad M, Seadawy AR, Sarwar A, Yasin F, Novel analytical solutions and optical soliton structures of fractional-order perturbed Kaup-Newell model and its application, J. Nonlinear Opt. Phys. Mater. 32(4), 2350032 (2023). https://doi.org/10.1142/S0218863523500327. [NASA ADS] [CrossRef] [Google Scholar]
  52. Yıldırım Y, Biswas A, Zhou Q, Alshomrani AS, Belic MR, Sub pico-second optical pulses in birefringent fibers for kaup–newell equation with cutting-edge integration technologies, Results Phys. 15, 102660 (2019). https://doi.org/10.1016/j.rinp.2019.102660. [CrossRef] [Google Scholar]
  53. Ahmed HM, Rabie WB, Ragusa MA, Optical solitons and other solutions to kaup–newell equation with jacobi elliptic function expansion method, Anal. Math. Phys. 11, 1 (2021). https://doi.org/10.1007/s13324-020-00464-2. [CrossRef] [Google Scholar]
  54. Mahmood A, Abbas M, Nazir T, Abdullah FA, Alzaidi AS, Emadifar H, Optical soliton solutions to the coupled kaup-newell equation in birefringent fibers, Ain Shams Eng. J. 15(7), 102757 (2024). https://doi.org/10.1016/j.asej.2024.102757. [CrossRef] [Google Scholar]
  55. Rehman HU, Awan AU, Abro KA, El Din EMT, Jafar S, Galal AM, A non-linear study of optical solitons for kaup-newell equation without four-wave mixing, J. King Saud Univ. Sci. 34(5), 102056 (2022). https://doi.org/10.1016/j.jksus.2022.102056. [CrossRef] [Google Scholar]
  56. Li Z, Dynamics and optical soliton solutions in birefringent fibers for the coupled Kaup-Newell equation via planar dynamical system analysis method, Results Phys. 51, 106690 (2023). https://doi.org/10.1016/j.rinp.2023.106690. [CrossRef] [Google Scholar]
  57. Ahmad J, Akram S, Noor K, Nadeem M, Bucur A, Alsayaad Y, Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber, Sci. Rep. 13(1), 10877 (2023). https://doi.org/10.1038/s41598-023-37757-y. [CrossRef] [Google Scholar]
  58. Podlubny I, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1999). [Google Scholar]
  59. Khalil R, Al Horani M, Yousef A, Sababheh M, A new definition of fractional derivative, Journal of computational and applied mathematics 264, 65 (2014). https://doi.org/10.1016/j.cam.2014.01.002. [CrossRef] [Google Scholar]
  60. Al-Ghafri KS, Soliton behaviours for the conformable space-time fractional complex Ginzburg–Landau equation in optical fibers, Symmetry 12(2), 219 (2020). https://doi.org/10.3390/sym12020219. [NASA ADS] [CrossRef] [Google Scholar]
  61. Kudryashov NA, Kutukov AA, Nifontov DR, Analytical solutions and conservation laws of the generalized nonlinear Schrödinger equation with anti-cubic and cubic-quintic-septic nonlinearities, Opt. Quantum Electron. 56(7), 1 (2024). https://doi.org/10.1007/s11082-024-07092-1. [NASA ADS] [CrossRef] [Google Scholar]
  62. Kutukov AA, Kudryashov NA, Analytical solutions of the generalized kaup–newell equation, Optik 293, 171437 (2023). https://doi.org/10.1016/j.ijleo.2023.171437. [NASA ADS] [CrossRef] [Google Scholar]
  63. Kudryashov NA, Lavrova SF, Painlevé analysis of the traveling wave reduction of the third-order derivative nonlinear Schrödinger equation, Mathematics 12(11), 1632 (2024). https://doi.org/10.3390/math12111632. [CrossRef] [Google Scholar]
  64. Kudryashov NA, Painlevé analysis of the resonant third-order nonlinear Schrödinger equation, Appl. Math. Lett. 158, 109232 (2024). https://doi.org/10.1016/j.aml.2024.109232. [CrossRef] [Google Scholar]
  65. Taogetusang S, The jacobi elliptic function-like exact solutions to two kinds of kdv equations with variable coefficients and kdv equation with forcible term, Chin. Phys. 15(12), 2809 (2006). https://doi.org/10.1088/1009-1963/15/12/008. [CrossRef] [Google Scholar]
  66. Yomba E, The extended fan’s sub-equation method and its application to KdV–MKdV, BKK and variant boussinesq equations, Phys. Lett. A 336(6), 463 (2005). https://doi.org/10.1016/j.physleta.2005.01.027. [NASA ADS] [CrossRef] [Google Scholar]
  67. Okposo NI, Raghavendar K, Khan N, Gómez-Agullar J, Jonathan AM, New exact optical solutions for the Lakshmanan-Porsezian–Daniel equation with parabolic law nonlinearity using the ϕ6-expansion technique, Nonlinear Dyn. 113, 4775 (2024). https://doi.org/10.1007/s11071-024-10430-3. [Google Scholar]
  68. Al-Ghafri K, Krishnan E, Bekir A, Chiral solitons with W-shaped and other profiles in (1+ 2) dimensions, Eur. Phys. J. Plus 137(1), 111 (2022). https://doi.org/10.1140/epjp/s13360-022-02355-w. [NASA ADS] [CrossRef] [Google Scholar]
  69. Al-Ghafri KS, Biswas A, Alshomrani AS, Chirped gray and singular optical solitons with generalized quadratic-cubic law of self-phase modulation and nonlinear chromatic dispersion, J. Opt. (India) 1, 1 (2024). https://doi.org/10.1007/s12596-024-02005-7. [Google Scholar]

All Tables

Table 1

Three Jacobi elliptic solutions to equation (28).

All Figures

thumbnail Figure 1

Intensity profile of dark soliton given by solutions (34), (42) and (52) with parameter values a1 = a2 = b1 = b2 = c1 = c2 = ω1 = 0.5, ν = 1.25, λ = 1.5. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 2

Intensity profile of bright soliton given by solutions (38), (48) and (56) with parameter values a1 = 0.93, a2 = b2 = −0.5, b1 = c1 = c2 = 0.5, ω1 = 1.5, ν = 0.75, λ = 1.5. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 3

Intensity profile of dark soliton given by solutions (62), (70) and (96) with the same parameter values as in Figure 1 except b1 = −0.5, ω1 = 0.128, ν = 0.75. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 4

Intensity profile of bright soliton given by solution (66) with the same parameter values as in Figure 1 except c1 = −0.5, ω1 = 1.65, ν = 1.75. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 5

Intensity profile of bright soliton given by solutions (76) and (84) with the same parameter values as in Figure 3. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 6

Intensity profile of dark soliton given by solution (80) with the same parameter values as in Figure 4. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 7

Intensity profile of dark soliton given by solutions (90) and (100) with the same parameter values as in Figure 4. (a) 3D plot of dark soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 8

Intensity profile of bright soliton given by solutions (91) and (101) with the same parameter values as in Figure 4. (a) 3D plot of bright soliton; (b) |p|2 with distinct values of α; (c) |q|2 with distinct values of α; (d) Chirping profile.

In the text
thumbnail Figure 9

The dispersion relation ω ̃ = ω ̃ ( κ ̃ ) $ \tilde{\omega }=\tilde{\omega }(\tilde{\kappa })$ between frequency ω ̃ $ \tilde{\omega }$ and wave number κ ̃ $ \tilde{\kappa }$ given in (110).

In the text
thumbnail Figure 10

Nonlinearity effect on the chirped bright soliton given by solution (66) with various values of parameters b1, c1, b2, c2. (a) |p|2 with distinct values of b1; (b) |p|2 with distinct values of c1; (c) |p|2 with distinct values of b2; (d) |p|2 with distinct values of c2.

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.