Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 12
Number of page(s) 19
DOI https://doi.org/10.1051/jeos/2025007
Published online 04 March 2025
  1. Falaggis K et al., Freeform optics: introduction, Opt. Express 30, 4 (2022). https://doi.org/10.1364/OE.454788. [Google Scholar]
  2. Rolland JP et al., Freeform optics for imaging, Optica 8, 2 (2021). https://doi.org/10.1364/optica.413762. [Google Scholar]
  3. Shaping Europe’s digital future: European Commision; 2022 [Available from: https://digital-strategy.ec.europa.eu/en/policies/photonics. [Google Scholar]
  4. Schindler K, Farker M, in Werkstoffe, Verfahren und Prüftechnik für Feinoptiker (OptoNet, Jena, Germany, 2009). [Google Scholar]
  5. Brinksmeier E et al., Ultra-precision grinding, CIRP Ann. 59, 2 (2010). https://doi.org/10.1016/j.cirp.2010.05.001. [Google Scholar]
  6. Klocke F, in Fertigungsverfahren 2: Zerspanung mit geometrisch unbestimmter Schneide, 5th edn. (Springer-Verlag, Berlin, 2017). [CrossRef] [Google Scholar]
  7. Zhong Y et al., Experimental study on surface integrity and subsurface damage of fused silica in ultra-precision grinding, Int. J. Adv. Manuf. Technol. 115, 11 (2021). https://doi.org/10.1007/s00170-021-07439-y. [Google Scholar]
  8. Bliedtner J, in Optiktechnologie: Grundlagen – Verfahren – Anwendung – Beispiele, 3rd edn. (Carl Hanser Verlag, München, 2022). [CrossRef] [Google Scholar]
  9. Wang J et al., Evaluating subsurface damage in optical glasses, J. Eur. Opt. Soc. Rapid Publ. 6, 11001 (2011). https://doi.org/10.1051/jeos.2011.11001. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Bifano TG, Dow TA, Scattergood RO, Ductile-regime grinding: a new technology for machining brittle materials, J. Manuf. Sci. Eng. 113, 2 (1991). https://doi.org/10.1115/1.2899676. [Google Scholar]
  11. Bifano TG, Bierden PA, Fixed-abrasive grinding of brittle hard-disk substrates, Int. J. Mach. Tools Manuf. 37, 7 (1997). https://doi.org/10.1016/S0890-6955(96)00089-2. [Google Scholar]
  12. Kitzig-Frank H, Azarhoushang B, Shamray S, in Moderne Schleiftechnologie und Feinstbearbeitung, 2018 (Kompetenzzentrum für Spanende Fertigung (KSF), Hochschule Furtwangen, Villingen-Schwenningen, Germany, 2018). [Google Scholar]
  13. Zhang Z, Yan J, Kuriyagawa T, Manufacturing technologies toward extreme precision, Int. J. Extrem. Manuf. 1, 2 (2019). https://doi.org/10.1088/2631-7990/ab1ff1. [Google Scholar]
  14. Henkel S et al., in Fourth European Seminar on Precision Optics Manufacturing, TH Deggendorf, 2017 (SPIE, Bellingham, WA, USA, 2017). https://doi.org/10.1117/12.2269500. [Google Scholar]
  15. Binder M et al., in EOSAM, Porto, Portugal, 2020 (EPJ Web of Conferences, Les Ulis, France, 2020). https://doi.org/10.1051/epjconf/202023803010. [Google Scholar]
  16. Schulze C, Henkel S, Bliedtner J, in EOSAM 2020, 2020 (EPJ Web of Conferences, Les Ulis, France, 2020). https://doi.org/10.1051/epjconf/202023803011. [Google Scholar]
  17. Henkel S et al., in SPIE Optifab, Rochester, New York, United States, 2017 (SPIE, 2017). https://doi.org/10.1117/12.2277189. [Google Scholar]
  18. Wang C et al., Modeling of the static tool influence function of bonnet polishing based on FEA, Int. J. Adv. Manuf. Technol. 74, 1–4 (2014). https://doi.org/10.1007/s00170-014-6004-3. [Google Scholar]
  19. Cao ZC, Cheung CF, Liu MY, Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces, Opt. Express 26, 2 (2018). https://doi.org/10.1364/OE.26.002065. [Google Scholar]
  20. Blalock T, Medicus K, DeGroote Nelson J, in Optical Manufacturing and Testing XI, San Diego, California, 2015 (SPIE, 2015). https://doi.org/10.1117/12.2188523. [Google Scholar]
  21. Hecht K, in Entwicklung eines Laserstrahlpolierverfahrens für Quarzglasoberflächen (Technical University Ilmenau, Ilmenau, 2012). [Google Scholar]
  22. Zhao L et al., Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing, Int. J. Extrem. Manuf. 1, 3 (2019). https://doi.org/10.1088/2631-7990/ab3033. [Google Scholar]
  23. Temmler A, Willenborg E, Wissenbach K, in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, San Francisco, California, 2012 (SPIE, 2012). https://doi.org/10.1117/12.906001. [Google Scholar]
  24. Nowak KM, Baker HJ, Hall DR, Efficient laser polishing of silica micro-optic components, Appl. Opt. 45, 1 (2006). https://doi.org/10.1364/AO.45.000162. [Google Scholar]
  25. Weingarten C et al., Laser polishing and laser shape correction of optical glass, JLasA 29, 1 (2017). https://doi.org/10.2351/1.4974905. [Google Scholar]
  26. Paetzelt H, Böhm G, Arnold T, in 13th euspen International Conference, Berlin, 2013 (EUSPEN, 2013), pp. 19–22. [Google Scholar]
  27. Arnold T et al., in EOS Optical Technologies, München, 2019 (EPJ Web of Conferences, 2019). https://doi.org/10.1051/epjconf/201921503003. [Google Scholar]
  28. Li R, Li Y, Deng H, Plasma-induced atom migration manufacturing of fused silica, Precis. Eng. 76, 305–313 (2022). https://doi.org/10.1016/j.precisioneng.2022.04.005. [CrossRef] [Google Scholar]
  29. Müller H, Arnold T, Surface morphology in plasma jet polishing: theoretical description and application, J. Eur. Opt. Soc.-Rapid Publ. 19, 2 (2023). https://doi.org/10.1051/jeos/2023034. [CrossRef] [EDP Sciences] [Google Scholar]
  30. Arnold T et al., Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook, Nucl. Instrum. Methods Phys. Res. Sect. A 616, 2–3 (2010). https://doi.org/10.1016/j.nima.2009.11.013. [Google Scholar]
  31. Arnold T, Böhm G, Paetzelt H, Ultra-precision surface machining with reactive plasma jets, Contrib. Plasma Phys. 54, 2 (2014). https://doi.org/10.1002/ctpp.201310058. [Google Scholar]
  32. Meister J, Arnold T, New process simulation procedure for high-rate plasma jet machining, Plasma Chem. Plasma Process. 31, 1 (2010). https://doi.org/10.1007/s11090-010-9267-y. [Google Scholar]
  33. Alvarez LW, inventor; Optical Res & Dev CORP, assignee. Two-element variable-power spherical lens. United States patent 3,305,294. 1967 21.02.1967. [Google Scholar]
  34. Nürnberg F et al., in Laser-Induced Damage in Optical Materials, Boulder, Colorado, 2015 (SPIE, 2015). https://doi.org/10.1117/12.2194289. [Google Scholar]
  35. Qian J et al., Tunable point defects in hydroxyl fused silica enabled by ultrashort laser pulses: photostimulated luminescence and functional module fabrication, Opt. Mater. Express 10, 5 (2020). https://doi.org/10.1364/ome.391660. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.