Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 35
Number of page(s) 7
DOI https://doi.org/10.1051/jeos/2023031
Published online 19 June 2023

© The Author(s), published by EDP Sciences, 2023

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

One of the several models that is being lately addressed is the concatenation of three well known equations that are frequently visible in the field of nonlinear fiber optics. They are the Lakshmanan–Porsezian–Daniel (LPD) model, nonlinear Schrödinger’s equation (NLSE) and Sasa–Satsuma equation (SSE). This concatenated model first appeared during 2014 and was studied by others to date [110]. There are various aspects of this model that have been addressed. These include rogue wave studies, the numerical study of soliton solutions by the aid of Laplace–Adomian decomposition scheme, the location of the conservation laws, the Painleve analysis, the retrieval of soliton solutions using the method of undetermined coefficients and others. Some other features that are made to be visible are the application of the Kudryashov’s approaches to obtain the straddled solitons to the model, application of trial equation approach to address the model, studying the model in birefringent fibers. Later, the model was studied with nonlinear chromatic dispersion (CD) that revealed quiescent solitons. Moreover, the model was extended to birefringent fibers where a full spectrum of soliton solutions were revealed [7, 1116].

The current paper will take these studies a bit further along. This concatenation model is being addressed with the inclusion of spatio-temporal dispersion (STD) as well as the pre-existing chromatic dispersion (CD) and the self-phase modulation (SPM) that comes with Kerr law. The advantage of the inclusion of STD is that the velocity of the soliton can be controlled. This can be advantageously used to our benefit namely to control the Internet bottleneck effect that is a growing problem with an ever-increasing demand for faster Internet. This technological marvel is being utilized for the concatenation model for the initial once. The soliton solutions are first revealed with the usage of two algorithmic approaches. Subsequently, the conservation laws are derived, and the corresponding conserved quantities are identified After providing a brief overview of the model, the results and the respective mathematical analysis are exhibited.

The concatenation model with STD is formulated as [110]: i q t + a q xx + b q xt + c | q | 2 q + λ 1 [ α 1 q xxxx + α 2 ( q x ) 2 q * + α 3 | q x | 2 q + α 4 | q | 2 q xx + α 5 q 2 q xx * + α 6 | q | 4 q ] + i λ 2 [ α 7 q xxx + α 8 | q | 2 q x + α 9 q 2 q x * ] = 0 . $$ i{q}_t+a{q}_{{xx}}+b{q}_{{xt}}+c{\left|q\right|}^2q+{\lambda }_1\left[{\alpha }_1{q}_{{xxxx}}+{\alpha }_2{\left({q}_x\right)}^2{q}^{\mathrm{*}}+{\alpha }_3{\left|{q}_x\right|}^2q+{\alpha }_4{\left|q\right|}^2{q}_{{xx}}+{\alpha }_5{q}^2{q}_{{xx}}^{\mathrm{*}}+{\alpha }_6{\left|q\right|}^4q\right]+i{\lambda }_2\left[{\alpha }_7{q}_{{xxx}}+{\alpha }_8{\left|q\right|}^2{q}_x+{\alpha }_9{q}^2{q}_x^{\mathrm{*}}\right]=0. $$(1)

The wave profile, including its spatial and temporal derivatives, can be described by the complex function q(x, t). The linear temporal evolution of solitons is given by the first term, while a and b are the CD and STD coefficients and finally c represents SPM. The concatenation model is the conjoined version of three familiar, frequently visible models. For λ1 = λ2 = 0, the model collapses to NLSE, while λ1 = 0 or λ2 = 0 give the familiar SSE or LPD equation respectively.

2 Integration algorithms: A recapitulation

Let us examine a governing model with the structure of, G ( u , u x , u t , u xt , u xx , ) = 0 . $$ G(u,{u}_x,{u}_t,{u}_{{xt}},{u}_{{xx}},\dots )=0. $$(2)Here we can describe the wave profile, u = u(x, t), as a function of both time and space, denoted by t and x respectively.

The wave transformation: ξ = μ ( x - υ t ) , u ( x , t ) = U ( ξ ) , $$ \xi =\mu (x-{\upsilon t}),\hspace{1em}u(x,t)=U(\xi ), $$(3)reduces equation (2) to, P ( U , - μ υ U , μ U , μ 2 U , ) = 0 , $$ P(U,-{\mu \upsilon }U\mathrm{\prime},\mu U\mathrm{\prime},{\mu }^2U\mathrm{\prime \prime },\dots )=0, $$(4)where the wave velocity is indicated by υ, the wave variable is denoted by ξ, and the wave width is represented by the symbol μ.

2.1 Enhanced Kudryashov’s method

The fundamental principles of the methodology can be summarized as follows:

Step-1: The simplified equation (4) has a solution that can be expressed explicitly as follows: U ( ξ ) = λ 0 + l = 1 N i + j = l λ ij Q i ( ξ ) R j ( ξ ) , $$ U(\xi )={\lambda }_0+\sum_{l=1}^N \sum_{i+j=l} {\lambda }_{{ij}}{Q}^i(\xi ){R}^j(\xi ), $$(5)by the aid of the auxiliary equations, R ( ξ ) 2 = R ( ξ ) 2 ( 1 - χ R ( ξ ) 2 ) , $$ R\mathrm{\prime \prime}(\xi {)}^2=R(\xi {)}^2(1-{\chi R}(\xi {)}^2), $$(6)and, Q ( ξ ) = Q ( ξ ) ( η Q ( ξ ) - 1 ) , $$ Q\mathrm{\prime \prime}(\xi )=Q(\xi )({\eta Q}(\xi )-1), $$(7)where the constants in these equations include λ ij (i, j = 0, 1, …, N), η, χ, and λ0. The value of N is determined by the balancing principle in (4).

Step-2: The solutions derived from equations (6) and (7) are presented as below, R ( ξ ) = 4 d 4 d 2 e ξ + χ e - ξ , $$ R(\xi )=\frac{4d}{4{d}^2{e}^{\xi }+\chi {e}^{-\xi }}, $$(8)and, Q ( ξ ) = 1 η + f e ξ , $$ Q(\xi )=\frac{1}{\eta +f{e}^{\xi }}, $$(9)where d and f are constants.

Step-3: Inserting (5) along with equations (6) and (7) into (4), a system of algebraic equations arises. This system can then be addressed to provide the undetermined constants in (3) and (5). Finally, plugging (8) and (9) with parametric restrictions into (5) enables us bright and dark solitons.

2.2 General projective Riccati’s equation method

The algorithmic approach to the general projective Riccati’s equation method is listed here as follows:

Step-1: The explicit solution for the reduced equation (4) can be expressed as, U ( ξ ) = α 0 + i = 1 N ϕ i - 1 ( ξ ) ( α i ϕ ( ξ ) + β i ψ ( ξ ) ) . $$ U(\xi )={\alpha }_0+\sum_{i=1}^N {\phi }^{i-1}(\xi )({\alpha }_i\phi (\xi )+{\beta }_i\psi (\xi )). $$(10)

The functions ϕ(ξ) and ψ(ξ) satisfy, ϕ ( ξ ) = - ϕ ( ξ ) ψ ( ξ ) , ψ ( ξ ) = σ - ψ 2 ( ξ ) - δ ϕ ( ξ ) , $$ \begin{array}{c}\phi \mathrm{\prime \prime}(\xi )=-\phi (\xi )\psi (\xi ),\\ \psi \mathrm{\prime \prime}(\xi )=\sigma -{\psi }^2(\xi )-{\delta \phi }(\xi ),\end{array} $$(11)along with, ψ 2 ( ξ ) = σ - 2 δ ϕ ( ξ ) + δ 2 + τ σ ϕ 2 ( ξ ) , $$ {\psi }^2(\xi )=\sigma -2{\delta \phi }(\xi )+\frac{{\delta }^2+\tau }{\sigma }{\phi }^2(\xi ), $$(12)where β i , α i (i = 0, 1, …, N), σ > 0, δ and α0 are arbitrary constants.

Step-2: The solutions to (11) are characterized by, ϕ ( ξ ) = σ sech [ σ ξ ] δ sech [ σ ξ ] + 1 ,   ψ ( ξ ) = σ tanh [ σ ξ ] δ sech [ σ ξ ] + 1 , $$ \phi (\xi )=\frac{\sigma \mathrm{sech}\left[\sqrt{\sigma }\xi \right]}{\delta \mathrm{sech}\left[\sqrt{\sigma }\xi \right]+1},\enspace \hspace{1em}\psi (\xi )=\frac{\sqrt{\sigma }\mathrm{tanh}\left[\sqrt{\sigma }\xi \right]}{\delta \mathrm{sech}\left[\sqrt{\sigma }\xi \right]+1}, $$(13)and, ϕ ( ξ ) = σ csch [ σ ξ ] δ csch [ σ ξ ] + 1 , ψ ( ξ ) = σ coth [ σ ξ ] δ csch [ σ ξ ] + 1 , $$ \phi (\xi )=\frac{\sigma \mathrm{csch}\left[\sqrt{\sigma }\xi \right]}{\delta \mathrm{csch}\left[\sqrt{\sigma }\xi \right]+1},\hspace{1em}\psi (\xi )=\frac{\sqrt{\sigma }\mathrm{coth}\left[\sqrt{\sigma }\xi \right]}{\delta \mathrm{csch}\left[\sqrt{\sigma }\xi \right]+1}, $$(14)for τ = −1, 1 respectively and we obtain a positive integer number N by applying the balancing principle to the equation (4).

Step-3: Upon substituting the expressions given by equations (10)(12) into the governing equation (4), we obtain an over-determined system of algebraic equations. By solving this system of equations, we can obtain the unknown parameters in equations (10)(12). Finally, plugging (13) and (14) into (10) allows us hyperbolic-type wave solutions.

3 Application to the concatenation model

We can express the solution to equation (1) as a soliton wave, given by, ψ ( x , t ) = U ( ξ ) e ( x , t ) , $$ \psi (x,t)=U(\xi ){e}^{{i\phi }(x,t)}, $$(15)with, ξ = k ( x - vt ) , $$ \xi =k(x-{vt}), $$(16)where v is the speed of the soliton, and U(ξ) represents the amplitude component of the soliton. The phase component ϕ(x, t) is defined as, ϕ ( x , t ) = - κ x + ω t + θ 0 . $$ \phi (x,t)=-{\kappa x}+{\omega t}+{\theta }_0. $$(17)Here θ0 is the phase constant, and κ is the frequency of the soliton. By substituting the solution form given in equation (15) into the governing equation (1) and then separating the real and imaginary parts of the resulting equation, we obtain: k 2 ( a - bv - 6 α 1 λ 1 κ 2 + 3 α 7 λ 2 κ ) U + ( - a κ 2 + α 1 λ 1 κ 4 - α 7 λ 2 κ 3 - ω + ω ) U + ( c - λ 1 κ 2 ( α 2 - α 3 + α 4 + α 5 ) + ( α 8 - α 9 ) λ 2 κ ) U 3 + α 1 λ 1 k 4 U + ( α 4 + α 5 ) λ 1 k 2 U 2 U + ( α 2 + α 3 ) λ 1 k 2 U U 2 + α 6 λ 1 U 5 = 0 , $$ {k}^2\left(a-{bv}-6{\alpha }_1{\lambda }_1{\kappa }^2+3{\alpha }_7{\lambda }_2\kappa \right)U\mathrm{\prime \prime }+\left(-a{\kappa }^2+{\alpha }_1{\lambda }_1{\kappa }^4-{\alpha }_7{\lambda }_2{\kappa }^3-\omega +{b\kappa \omega }\right)U+\left(c-{\lambda }_1{\kappa }^2\left({\alpha }_2-{\alpha }_3+{\alpha }_4+{\alpha }_5\right)+\left({\alpha }_8-{\alpha }_9\right){\lambda }_2\kappa \right){U}^3+{\alpha }_1{\lambda }_1{k}^4U\mathrm{\prime \prime \prime \prime }+\left({\alpha }_4+{\alpha }_5\right){\lambda }_1{k}^2{U}^2U\mathrm{\prime \prime }+\left({\alpha }_2+{\alpha }_3\right){\lambda }_1{k}^2UU\mathrm{\prime \prime}^2+{\alpha }_6{\lambda }_1{U}^5=0, $$(18)and, - k ( 2 - 4 α 1 λ 1 κ 3 + 3 α 7 λ 2 κ 2 + v - v + ) U + k 3 ( α 7 λ 2 - 4 α 1 λ 1 κ ) U ' + k ( ( α 8 + α 9 ) λ 2 - 2 ( α 2 + α 4 - α 5 ) λ 1 κ ) U 2 U = 0 . $$ -k\left(2{a\kappa }-4{\alpha }_1{\lambda }_1{\kappa }^3+3{\alpha }_7{\lambda }_2{\kappa }^2+v-{b\kappa v}+{b\omega }\right)U\mathrm{\prime \prime}+{k}^3\left({\alpha }_7{\lambda }_2-4{\alpha }_1{\lambda }_1\kappa \right)U\mathrm{\prime \prime \prime \prime}+k\left(\left({\alpha }_8+{\alpha }_9\right){\lambda }_2-2\left({\alpha }_2+{\alpha }_4-{\alpha }_5\right){\lambda }_1\kappa \right){U}^2U\mathrm{\prime \prime}=0. $$(19)

The evolution of the soliton speed can be obtained from the imaginary part as follows: v = 2 - - 4 α 1 λ 1 κ 3 + 3 α 7 λ 2 κ 2 - 1 , $$ v=\frac{2{a\kappa }-{b\omega }-4{\alpha }_1{\lambda }_1{\kappa }^3+3{\alpha }_7{\lambda }_2{\kappa }^2}{{b\kappa }-1}, $$(20)with parametric restrictions, ( α 8 + α 9 ) λ 2 - 2 ( α 2 + α 4 - α 5 ) λ 1 κ = 0 , $$ \left({\alpha }_8+{\alpha }_9\right){\lambda }_2-2\left({\alpha }_2+{\alpha }_4-{\alpha }_5\right){\lambda }_1\kappa =0, $$(21)and, α 7 λ 2 - 4 α 1 λ 1 κ = 0 . $$ {\alpha }_7{\lambda }_2-4{\alpha }_1{\lambda }_1\kappa =0. $$(22)

Equation (18) can be simplified to, k 2 U + L 1 U 2 U + L 2 U + L 3 U U 2 + L 4 U + L 5 U 5 + L 6 U 3 = 0 , $$ {k}^2U\mathrm{\prime \prime \prime \prime }+{L}_1{U}^2U\mathrm{\prime \prime }+{L}_2U\mathrm{\prime \prime }+{L}_3U{U\mathrm{\prime \prime}^2+{L}_4U+{L}_5{U}^5+{L}_6{U}^3=0,} $$(23)with, { L 1 = α 4 + α 5 α 1 ,   L 2 = a - bv - 6 α 1 λ 1 κ 2 + 3 α 7 λ 2 κ α 1 λ 1 , L 3 = α 2 + α 3 α 1 ,   L 4 = - a κ 2 + α 1 λ 1 κ 4 - α 7 λ 2 κ 3 - ω + ω α 1 λ 1 k 2 , L 5 = α 6 α 1 k 2 ,   L 6 = c - λ 1 ( α 2 - α 3 + α 4 + α 5 ) κ 2 + ( α 8 - α 9 ) λ 2 κ α 1 λ 1 k 2 . $$ \left\{\begin{array}{c}{L}_1=\frac{{\alpha }_4+{\alpha }_5}{{\alpha }_1},\enspace \hspace{1em}{L}_2=\frac{a-{bv}-6{\alpha }_1{\lambda }_1{\kappa }^2+3{\alpha }_7{\lambda }_2\kappa }{{\alpha }_1{\lambda }_1},\\ {L}_3=\frac{{\alpha }_2+{\alpha }_3}{{\alpha }_1},\enspace \hspace{1em}{L}_4=\frac{-a{\kappa }^2+{\alpha }_1{\lambda }_1{\kappa }^4-{\alpha }_7{\lambda }_2{\kappa }^3-\omega +{b\kappa \omega }}{{\alpha }_1{\lambda }_1{k}^2},\\ {L}_5=\frac{{\alpha }_6}{{\alpha }_1{k}^2},\enspace \hspace{1em}{L}_6=\frac{c-{\lambda }_1\left({\alpha }_2-{\alpha }_3+{\alpha }_4+{\alpha }_5\right){\kappa }^2+\left({\alpha }_8-{\alpha }_9\right){\lambda }_2\kappa }{{\alpha }_1{\lambda }_1{k}^2}.\end{array}\right. $$(24)

The soliton velocity given by (20) is the one that carries a control parameter namely b, the coefficient of STD. This parameter can regulate the soliton flow in a triad juncture by allowing the traffic to proceed in one direction and holding off the Internet traffic in the other. Such a signaling effect can smoothen the traffic flow and mitigate the Internet bottleneck effect.

3.1 Enhanced Kudryashov’s scheme

Balancing U″″ with U5 in equation (23) yields N = 1, which leads to the following form of the solution: U ( ξ ) = λ 0 + λ 01 R ( ξ ) + λ 10 Q ( ξ ) . $$ U(\xi )={\lambda }_0+{\lambda }_{01}R(\xi )+{\lambda }_{10}Q(\xi ). $$(25)

Plugging (25) with (6) and (7) into equation (23) provides us the following results.

Result-1:

λ 0 = λ 10 = 0 , λ 01 = ± χ ( L 1 - L 6 + ϑ ) 2 L 5 , k = - ( L 2 + L 4 ) , L 3 = 3 L 2 ( L 1 - 5 L 6 + 3 ϑ ) + 2 L 4 ( 3 L 1 - 7 L 6 + 5 ϑ ) 6 L 2 + 4 L 4 , ϑ = ± ( L 1 - L 6 ) 2 + 8 ( 3 L 2 + 2 L 4 ) L 5 . $$ \begin{array}{c}{\lambda }_0={\lambda }_{10}=0,\hspace{1em}{\lambda }_{01}=\pm \sqrt{\frac{\chi \left({L}_1-{L}_6+\vartheta \right)}{2{L}_5}},\hspace{1em}k=\sqrt{-\left({L}_2+{L}_4\right)},\\ {L}_3=\frac{3{L}_2\left({L}_1-5{L}_6+3\vartheta \right)+2{L}_4\left(3{L}_1-7{L}_6+5\vartheta \right)}{6{L}_2+4{L}_4},\\ \vartheta =\pm \sqrt{{\left({L}_1-{L}_6\right)}^2+8\left(3{L}_2+2{L}_4\right){L}_5}.\end{array} $$(26)

As a consequence, the optoelectronic wave field comes out as, q ( x , t ) = { ± 4 d χ ( L 1 - L 6 + ϑ ) 2 L 5 4 d 2 exp [ - ( L 2 + L 4 ) ( x - vt ) ] + χ exp [ - - ( L 2 + L 4 ) ( x - vt ) ] } e i ( - κ x + ω t + θ 0 ) . $$ q(x,t)=\left\{\frac{\pm 4d\sqrt{\frac{\chi \left({L}_1-{L}_6+\vartheta \right)}{2{L}_5}}}{4{d}^2\mathrm{exp}\left[\sqrt{-\left({L}_2+{L}_4\right)}(x-{vt})\right]+\chi \mathrm{exp}\left[-\sqrt{-\left({L}_2+{L}_4\right)}(x-{vt})\right]}\right\}{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}. $$(27)Selecting χ = ±4d2, L2 + L4 < 0 and L5(L1 − L6 + ϑ) > 0 allows us a bright wave profile, q ( x , t ) = ± L 1 - L 6 + ϑ 2 L 5 sech [ - ( L 2 + L 4 ) ( x - vt ) ] e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\pm \sqrt{\frac{{L}_1-{L}_6+\vartheta }{2{L}_5}}\mathrm{sech}\left[\sqrt{-\left({L}_2+{L}_4\right)}(x-{vt})\right]{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(28)while setting χ = ±4d2, L2 + L4 < 0 and L5(L1 − L6 + ϑ) < 0 enables us a singular waveform, q ( x , t ) = ± - L 1 - L 6 + ϑ 2 L 5 csch [ - ( L 2 + L 4 ) ( x - vt ) ] e i ( - κ x + ω t + θ 0 ) . $$ q(x,t)=\pm \sqrt{-\frac{{L}_1-{L}_6+\vartheta }{2{L}_5}}\mathrm{csch}\left[\sqrt{-\left({L}_2+{L}_4\right)}(x-{vt})\right]{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}. $$(29)

These solitons are also addressed together with the parametric restriction (L1 − L6)2 + 8(3L2 + 2L4)L5 > 0.

Result-2:

λ 0 = - L 6 + ϱ 2 L 5 , λ 01 = 0 , λ 10 = - 2 η λ 0 , k = ± ( L 1 - 2 L 6 ) ( L 6 + ϱ ) 2 L 5 - L 2 + 4 L 4 , L 3 = 2 ( L 6 - 5 ϱ ) + 3 L 2 ( ϱ - L 6 ) L 4 + 4 L 1 , ϱ = ± L 6 2 - 4 L 4 L 5 . $$ \begin{array}{c}{\lambda }_0=\sqrt{-\frac{{L}_6+\varrho }{2{L}_5}},\hspace{1em}{\lambda }_{01}=0,\hspace{1em}{\lambda }_{10}=-2\eta {\lambda }_0,\hspace{1em}k=\pm \sqrt{\frac{\left({L}_1-2{L}_6\right)\left({L}_6+\varrho \right)}{2{L}_5}-{L}_2+4{L}_4},\\ {L}_3=2\left({L}_6-5\varrho \right)+\frac{3{L}_2\left(\varrho -{L}_6\right)}{{L}_4}+4{L}_1,\hspace{1em}\varrho =\pm \sqrt{{L}_6^2-4{L}_4{L}_5}.\end{array} $$(30)

Thus, the wave profile stands as, q ( x , t ) = - L 6 + ϱ 2 L 5 ( 1 - 2 η f exp [ ± ( L 1 - 2 L 6 ) ( L 6 + ϱ ) 2 L 5 - L 2 + 4 L 4 ( x - vt ) ] + η ) e i ( - κ x + ω t + θ 0 ) . $$ q(x,t)=\sqrt{-\frac{{L}_6+\varrho }{2{L}_5}}\left(1-\frac{2\eta }{f\mathrm{exp}\left[\pm \sqrt{\frac{\left({L}_1-2{L}_6\right)\left({L}_6+\varrho \right)}{2{L}_5}-{L}_2+4{L}_4}(x-{vt})\right]+\eta }\right){e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}. $$(31)

Choosing η = ±f, (L1 − 2L6)(L6 + ϱ) + 2(4L4 − L2)L5 > 0 and L5(L6 +  ϱ $ \varrho $)<0 allows us the dark and singular solitons, q ( x , t ) = ± - L 6 + ϱ 2 L 5 tanh [ 1 2 ( L 1 - 2 L 6 ) ( L 6 + ϱ ) 2 L 5 - L 2 + 4 L 4 ( x - vt ) ] e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\pm \sqrt{-\frac{{L}_6+\varrho }{2{L}_5}}\mathrm{tanh}\left[\frac{1}{2}\sqrt{\frac{\left({L}_1-2{L}_6\right)\left({L}_6+\varrho \right)}{2{L}_5}-{L}_2+4{L}_4}(x-{vt})\right]{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(32)and, q ( x , t ) = ± - L 6 + ϱ 2 L 5 coth [ 1 2 ( L 1 - 2 L 6 ) ( L 6 + ϱ ) 2 L 5 - L 2 + 4 L 4 ( x - vt ) ] e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\pm \sqrt{-\frac{{L}_6+\varrho }{2{L}_5}}\mathrm{coth}\left[\frac{1}{2}\sqrt{\frac{\left({L}_1-2{L}_6\right)\left({L}_6+\varrho \right)}{2{L}_5}-{L}_2+4{L}_4}(x-{vt})\right]{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(33)respectively. These solitons are also considered with the criterion L 6 2 - 4 L 4 L 5 > 0 . $ {L}_6^2-4{L}_4{L}_5>0.$

3.2 General projective Riccati’s equation approach

Balancing U″″ with U5 in equation (23) leads to N = 1, and hence, the solution can be expressed as follows: U ( ξ ) = α 0 + α 1 ϕ ( ξ ) + β 1 ψ ( ξ ) . $$ U(\xi )={\alpha }_0+{\alpha }_1\phi (\xi )+{\beta }_1\psi (\xi ). $$(34)

Plugging (34) together with (11) and (12) into equation (23) yields the following outcomes:

Result-1:

τ = - 1 , α 0 = 0 , β 1 = 0 , α 1 = ± 10 3 ( δ 2 - 1 ) k 4 L 2 ( 3 L 1 + 2 L 3 ) , σ = - L 2 5 k 2 , L 4 = 4 L 2 2 25 k 2 , L 6 = - L 2 ( ( 6 δ 2 + 3 ) L 1 + 2 ( δ 2 + 2 ) L 3 ) 30 ( δ 2 - 1 ) k 2 , L 5 = ( 4 L 1 + L 3 ) ( 3 L 1 + 2 L 3 ) 300 k 2 . $$ \begin{array}{c}\tau =-1,\hspace{1em}{\alpha }_0=0,\hspace{1em}{\beta }_1=0,\hspace{1em}{\alpha }_1=\pm 10\sqrt{\frac{3\left({\delta }^2-1\right){k}^4}{{L}_2\left(3{L}_1+2{L}_3\right)}},\hspace{1em}\sigma =-\frac{{L}_2}{5{k}^2},\hspace{1em}{L}_4=\frac{4{L}_2^2}{25{k}^2},\\ {L}_6=-\frac{{L}_2\left(\left(6{\delta }^2+3\right){L}_1+2\left({\delta }^2+2\right){L}_3\right)}{30\left({\delta }^2-1\right){k}^2},\hspace{1em}{L}_5=\frac{\left(4{L}_1+{L}_3\right)\left(3{L}_1+2{L}_3\right)}{300{k}^2}.\end{array} $$(35)

In this case, the nonlinear waveform turns out to be, q ( x , t ) = { 2 3 ( δ 2 - 1 ) L 2 3 L 1 + 2 L 3 sech [ - L 2 5 ( x - vt ) ] δ sech [ - L 2 5 ( x - vt ) ] + 1 } e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\left\{\mp \frac{2\sqrt{\frac{3\left({\delta }^2-1\right){L}_2}{3{L}_1+2{L}_3}}\mathrm{sech}\left[\sqrt{-\frac{{L}_2}{5}}(x-{vt})\right]}{\delta \mathrm{sech}\left[\sqrt{-\frac{{L}_2}{5}}(x-{vt})\right]+1}\right\}{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(36)with the aid of the constraints (δ2 − 1)(3L1 + 2L3) < 0 and L2 < 0. For δ = 0, a bright soliton is recovered.

Result-2:

τ = - 1 , α 0 = 0 , α 1 = 0 , β 1 = ± 2 15 k - ( 3 L 1 + 2 L 3 ) , σ = - ( δ 2 - 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 k 2 ( 3 ( δ 2 + 3 ) L 1 + 2 ( δ 2 - 1 ) L 3 ) , L 6 = - L 2 ( 3 L 1 + 2 L 3 ) ( ( 6 δ 2 - 9 ) L 1 + 2 ( δ 2 - 1 ) L 3 ) 30 k 2 ( 3 ( δ 2 + 3 ) L 1 + 2 ( δ 2 - 1 ) L 3 ) , L 5 = ( 4 L 1 + L 3 ) ( 3 L 1 + 2 L 3 ) 300 k 2 , L 4 = 2 ( δ 2 - 1 ) L 2 2 ( 3 L 1 + 2 L 3 ) ( 3 ( 2 δ 2 - 7 ) L 1 + 4 ( δ 2 - 1 ) L 3 ) 25 ( 3 ( δ 2 + 3 ) k L 1 + 2 ( δ 2 - 1 ) k L 3 ) 2 . $$ \begin{array}{c}\tau =-1,\hspace{1em}{\alpha }_0=0,\hspace{1em}{\alpha }_1=0,\hspace{1em}{\beta }_1=\pm \frac{2\sqrt{15}k}{\sqrt{-\left(3{L}_1+2{L}_3\right)}},\hspace{1em}\sigma =-\frac{\left({\delta }^2-1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5{k}^2\left(3\left({\delta }^2+3\right){L}_1+2\left({\delta }^2-1\right){L}_3\right)},\\ {L}_6=-\frac{{L}_2\left(3{L}_1+2{L}_3\right)\left(\left(6{\delta }^2-9\right){L}_1+2\left({\delta }^2-1\right){L}_3\right)}{30{k}^2\left(3\left({\delta }^2+3\right){L}_1+2\left({\delta }^2-1\right){L}_3\right)},\hspace{1em}{L}_5=\frac{\left(4{L}_1+{L}_3\right)\left(3{L}_1+2{L}_3\right)}{300{k}^2},\\ {L}_4=\frac{2\left({\delta }^2-1\right){L}_2^2\left(3{L}_1+2{L}_3\right)\left(3\left(2{\delta }^2-7\right){L}_1+4\left({\delta }^2-1\right){L}_3\right)}{25{\left(3\left({\delta }^2+3\right)k{L}_1+2\left({\delta }^2-1\right)k{L}_3\right)}^2}.\end{array} $$(37)

Therefore, the optoelectronic wave field appears as, q ( x , t ) = { ± 2 3 ( δ 2 - 1 ) L 2 3 ( δ 2 + 3 ) L 1 + 2 ( δ 2 - 1 ) L 3 tanh [ - ( δ 2 - 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 ( 3 ( δ 2 + 3 ) L 1 + 2 ( δ 2 - 1 ) L 3 ) ( x - vt ) ] δ sech [ - ( δ 2 - 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 ( 3 ( δ 2 + 3 ) L 1 + 2 ( δ 2 - 1 ) L 3 ) ( x - vt ) ] + 1 } e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\left\{\frac{\pm 2\sqrt{\frac{3\left({\delta }^2-1\right){L}_2}{3\left({\delta }^2+3\right){L}_1+2\left({\delta }^2-1\right){L}_3}}\mathrm{tanh}\left[\sqrt{-\frac{\left({\delta }^2-1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5\left(3\left({\delta }^2+3\right){L}_1+2\left({\delta }^2-1\right){L}_3\right)}}(x-{vt})\right]}{\delta \mathrm{sech}\left[\sqrt{-\frac{\left({\delta }^2-1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5\left(3\left({\delta }^2+3\right){L}_1+2\left({\delta }^2-1\right){L}_3\right)}}(x-{vt})\right]+1}\right\}{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(38)with the usage of the relations (δ2 − 1)((3(δ2 + 3)L1 + 2(δ2 − 1)L3)L2 > 0 and 3L1 + 2L3 < 0. For δ = 0, a dark soliton is retrieved.

Result-3:

τ = 1 , α 0 = 0 , β 1 = 0 , α 1 = ± 10 3 ( δ 2 + 1 ) k 4 L 2 ( 3 L 1 + 2 L 3 ) , σ = - L 2 5 k 2 , L 4 = 4 L 2 2 25 k 2 , L 6 = - L 2 ( ( 6 δ 2 - 3 ) L 1 + 2 ( δ 2 - 2 ) L 3 ) 30 ( δ 2 + 1 ) k 2 , L 5 = 12 L 1 2 + 11 L 3 L 1 + 2 L 3 2 300 k 2 . $$ \begin{array}{c}\tau =1,\hspace{1em}{\alpha }_0=0,\hspace{1em}{\beta }_1=0,\hspace{1em}{\alpha }_1=\pm 10\sqrt{\frac{3\left({\delta }^2+1\right){k}^4}{{L}_2\left(3{L}_1+2{L}_3\right)}},\hspace{1em}\sigma =-\frac{{L}_2}{5{k}^2},\hspace{1em}{L}_4=\frac{4{L}_2^2}{25{k}^2},\\ {L}_6=-\frac{{L}_2\left(\left(6{\delta }^2-3\right){L}_1+2\left({\delta }^2-2\right){L}_3\right)}{30\left({\delta }^2+1\right){k}^2},\hspace{1em}{L}_5=\frac{12{L}_1^2+11{L}_3{L}_1+2{L}_3^2}{300{k}^2}.\end{array} $$(39)

As a result, the nonlinear wave profile shapes up as, q ( x , t ) = { 2 3 ( δ 2 + 1 ) L 2 3 L 1 + 2 L 3 csch [ - L 2 5 ( x - vt ) ] δ csch [ - L 2 5 ( x - vt ) ] + 1 } e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\left\{\frac{\mp 2\sqrt{\frac{3\left({\delta }^2+1\right){L}_2}{3{L}_1+2{L}_3}}\mathrm{csch}\left[\sqrt{-\frac{{L}_2}{5}}(x-{vt})\right]}{\delta \mathrm{csch}\left[\sqrt{-\frac{{L}_2}{5}}(x-{vt})\right]+1}\right\}{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(40)with the help of the conditions 3L1 + 2L3 < 0 and L2 < 0. For δ = 0, a singular soliton is extracted.

Result-4:

τ = 1 , α 0 = 0 , α 1 = 0 , β 1 = ± 2 15 k - ( 3 L 1 + 2 L 3 ) , σ = - ( δ 2 + 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 k 2 ( 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) , L 6 = - L 2 ( 3 L 1 + 2 L 3 ) ( ( 6 δ 2 + 9 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) 30 k 2 ( 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) , L 5 = 12 L 1 2 + 11 L 3 L 1 + 2 L 3 2 300 k 2 , L 4 = 2 ( δ 2 + 1 ) L 2 2 ( 3 L 1 + 2 L 3 ) ( 3 ( 2 δ 2 + 7 ) L 1 + 4 ( δ 2 + 1 ) L 3 ) 25 k 2 ( 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) 2 . $$ \begin{array}{c}\tau =1,\hspace{1em}{\alpha }_0=0,\hspace{1em}{\alpha }_1=0,\hspace{1em}{\beta }_1=\pm \frac{2\sqrt{15}k}{\sqrt{-\left(3{L}_1+2{L}_3\right)}},\hspace{1em}\sigma =-\frac{\left({\delta }^2+1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5{k}^2\left(3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)},\\ {L}_6=-\frac{{L}_2\left(3{L}_1+2{L}_3\right)\left(\left(6{\delta }^2+9\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)}{30{k}^2\left(3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)},\hspace{1em}{L}_5=\frac{12{L}_1^2+11{L}_3{L}_1+2{L}_3^2}{300{k}^2},\\ {L}_4=\frac{2\left({\delta }^2+1\right){L}_2^2\left(3{L}_1+2{L}_3\right)\left(3\left(2{\delta }^2+7\right){L}_1+4\left({\delta }^2+1\right){L}_3\right)}{25{k}^2{\left(3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)}^2}.\end{array} $$(41)

Hence, the nonlinear waveform can be expressed as, q ( x , t ) = { ± 2 3 ( δ 2 + 1 ) L 2 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 coth [ - ( δ 2 + 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 ( 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) ( x - vt ) ] δ csch [ - ( δ 2 + 1 ) L 2 ( 3 L 1 + 2 L 3 ) 5 ( 3 ( δ 2 - 3 ) L 1 + 2 ( δ 2 + 1 ) L 3 ) ( x - vt ) ] + 1 } e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=\left\{\frac{\pm 2\sqrt{\frac{3\left({\delta }^2+1\right){L}_2}{3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3}}\mathrm{coth}\left[\sqrt{-\frac{\left({\delta }^2+1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5\left(3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)}}(x-{vt})\right]}{\delta \mathrm{csch}\left[\sqrt{-\frac{\left({\delta }^2+1\right){L}_2\left(3{L}_1+2{L}_3\right)}{5\left(3\left({\delta }^2-3\right){L}_1+2\left({\delta }^2+1\right){L}_3\right)}}(x-{vt})\right]+1}\right\}{e}^{i(-{\kappa x}+{\omega t}+{\theta }_0)}, $$(42)with the aid of the restrictions ((3(δ2 − 3)L1 + 2(δ2 + 1)L3)L2 > 0 and 3L1 + 2L3 < 0. For δ = 0, a singular soliton is yielded.

4 Conservation laws

Suppose (Tt, Tx) is a conserved vector associated with the conservation law, D t T t + D x T x = 0 , $$ {D}_t{T}^t+{D}_x{T}^x=0, $$(43)valid along the solutions of the given differential equation. In that case, it follows that, E q [ D t T t + D x T x ] = 0 , $$ {E}_q[{D}_t{T}^t+{D}_x{T}^x]=0, $$(44)where E q represents the Euler-Lagrange operator. Furthermore, assuming the existence of a non-trivial differential function Q, referred to as a “multiplier,” such that, QE = D t T t + D x T x , $$ {QE}={D}_t{T}^t+{D}_x{T}^x, $$(45)and Q is associated with a conserved vector, then it follows that, E q ( QE ) = 0 . $$ {E}_q({QE})=0. $$(46)

This implies that each multiplier Q results in a conserved vector through a Homotopy operator. E = 0 is the differential equation and Tt, Tx are the conserved densities and fluxes, respectively.

The concatenation model with STD, gives the following conservation laws:

  • 1.

    For,

α 2 = α 4 = α 5 = 0 , $$ {\alpha }_2={\alpha }_4={\alpha }_5=0, $$(47)we get a nontrivial power (P) density as: T P = 1 2 | q | 2 + b 2 I ( q * q x ) . $$ {T}^P=\frac{1}{2}{\left|q\right|}^2+\frac{b}{2}\mathfrak{I}\left({q}^{\mathrm{*}}{q}_x\right). $$(48)
  • 2.

    If, in addition,

α 3 = α 9 = 0 , $$ {\alpha }_3={\alpha }_9=0, $$(49)we arrive at conserved linear momentum (M) density, T M = - 1 4 b | q x | 2 + 1 4 b R ( q q xx * ) - b 2 I ( q * q x ) . $$ {T}^M=-\frac{1}{4}b{\left|{q}_x\right|}^2+\frac{1}{4}b\mathfrak{R}\left(q{q}_{{xx}}^{\mathrm{*}}\right)-\frac{b}{2}\mathfrak{I}\left({q}^{\mathrm{*}}{q}_x\right). $$(50)
  • 3.

    Conserved Hamiltonian (H) density is presented as below,

T H = λ 1 [ 1 2 α 1 R ( q q xxxx * ) + 1 6 α 6 | q | 6 ] + λ 2 [ - 1 2 α 7 I ( q * q xxx ) - 1 4 α 8 | q | 2 I ( q * q x ) ] + 1 4 c | q | 4 + 1 2 a R ( q q xx * ) + 1 4 b [ R ( q q xt * ) + R ( q x q t * ) ] . $$ {T}^H={\lambda }_1\left[\frac{1}{2}{\alpha }_1\mathfrak{R}\left(q{q}_{{xxxx}}^{\mathrm{*}}\right)+\frac{1}{6}{\alpha }_6{\left|q\right|}^6\right]+{\lambda }_2\left[-\frac{1}{2}{\alpha }_7\mathfrak{I}\left({q}^{\mathrm{*}}{q}_{{xxx}}\right)-\frac{1}{4}{\alpha }_8{\left|q\right|}^2\mathfrak{I}\left({q}^{\mathrm{*}}{q}_x\right)\right]+\frac{1}{4}c{\left|q\right|}^4+\frac{1}{2}a\mathfrak{R}\left(q{q}_{{xx}}^{\mathrm{*}}\right)+\frac{1}{4}b\left[\mathfrak{R}\left(q{q}_{{xt}}^{\mathrm{*}}\right)+\mathfrak{R}\left({q}_x{q}_t^{\mathrm{*}}\right)\right]. $$(51)

The expression for the bright 1-soliton solution, provided in equation (28), can be conveniently structured as: q ( x , t ) = A   sech   [ B ( x - vt ) ] e i ( - κ x + ω t + θ 0 ) , $$ q(x,t)=A\enspace \mathrm{sech}\enspace [B(x-{vt})]{e}^{i\left(-{\kappa x}+{\omega t}+{\theta }_0\right)}, $$(52)where the soliton’s amplitude is denoted by A, its inverse width is modeled by B, and also its velocity is formulated by v. Therefore, the following conserved quantities arise from this form of the bright soliton: P = - [ | q | 2 + b 2 i ( q * q x - q q x * ) ] d x = 2 A 2 B ( 1 - ) , $$ P={\int }_{-\mathrm{\infty }}^{\mathrm{\infty }} \left[{\left|q\right|}^2+\frac{b}{2i}\left({q}^{\mathrm{*}}{q}_x-q{q}_x^{\mathrm{*}}\right)\right]\mathrm{d}x=\frac{2{A}^2}{B}\left(1-{b\kappa }\right), $$(53) M = 1 4 - [ a | q x | 2 - a R ( q q xx * ) + 2 b I ( q * q x ) ] d x = A 2 3 B ( a B 2 + a κ 2 - 3 ) , $$ M=\frac{1}{4}{\int }_{-\mathrm{\infty }}^{\mathrm{\infty }} \left[a{\left|{q}_x\right|}^2-a\mathfrak{R}\left(q{q}_{{xx}}^{\mathrm{*}}\right)+2b\mathfrak{I}\left({q}^{\mathrm{*}}{q}_x\right)\right]\mathrm{d}x=\frac{{A}^2}{3B}\left(a{B}^2+a{\kappa }^2-3{b\kappa }\right), $$(54)and, H = - T H d x = λ 1 α 1 A 2 B 15 ( 9 B 2 + 30 κ 2 + 5 κ 4 ) + 4 λ 1 α 6 A 6 45 B - λ 2 α 7 κ A 2 B ( κ 2 + 3 ) + ( λ 2 α 8 κ + c ) A 4 3 B - a A 2 3 B ( B 2 + 3 κ 2 ) + b A 2 6 B ( v B 2 + 3 ω κ ) . $$ H={\int }_{-\mathrm{\infty }}^{\mathrm{\infty }} {T}^H\mathrm{d}x=\frac{{\lambda }_1{\alpha }_1{A}^2B}{15}\left(9{B}^2+30{\kappa }^2+5{\kappa }^4\right)+\frac{4{\lambda }_1{\alpha }_6{A}^6}{45B}-\frac{{\lambda }_2{\alpha }_7\kappa {A}^2}{B}\left({\kappa }^2+3\right)+\left({\lambda }_2{\alpha }_8\kappa +c\right)\frac{{A}^4}{3B}-\frac{a{A}^2}{3B}\left({B}^2+3{\kappa }^2\right)+\frac{b{A}^2}{6B}\left(v{B}^2+3{\omega \kappa }\right). $$(55)

5 Conclusion

In this paper, the concatenation model is revisited with the incorporation of STD alongside the existing CD. The SPM is with Kerr law of nonlinearity. The rational expression for the soliton velocity placed us at an advantage of controlling the Internet bottleneck effect that is responsible of slowing down the traffic flow across the globe. Such an engineering marvel is being applied to the concatenation model for the first time and this gives a true flavor of novelty to the current paper. The results of the paper are indeed encouraging and are applicable to various additional avenues. One would next need to study this technological aspect in birefringent fibers followed by dispersion-flattened fibers. This would lead to the departure from the lab to a situation where rubber meets the road. Additional effects such as stochasticity, time-dependent coefficients to the model are yet to be explored. These would lead to several novelties that would be sequentially disseminated all across the board after aligning the results with pre-existing reports [1734].

Conflict of interest

The authors declare no conflict of interest.

References

  1. Ankiewicz A., Akhmediev N. (2014) Higher-order integrable evolution equation and its soliton solutions, Phys. Lett. A 378, 358–361. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ankiewicz A., Wang Y., Wabnitz S., Akhmediev N. (2014) Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions, Phys. Rev. E 89, 012907. [NASA ADS] [CrossRef] [Google Scholar]
  3. Biswas A., Vega-Guzman J., Kara A.H., Khan S., Triki H., Gonzalez-Gaxiola O., Moraru L., Georgescu P.L. (2023) Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach, Universe 9, 1, Article 15. [Google Scholar]
  4. Biswas A., Vega-Guzman J., Yildirim Y., Moraru L., Iticescu C., Alghamdi A.A. (2023) Optical solitons for the concatenation model with differential group delay: undetermined coefficients, Mathematics 11, 9, 2012. [CrossRef] [Google Scholar]
  5. González-Gaxiola O., Biswas A., Ruiz de Chavez J., Alghamdi A.A. (2023) Bright and dark optical solitons for the concatenation model by the Laplace–Adomian decomposition scheme. Submitted. [Google Scholar]
  6. Kukkar A., Kumar S., Malik S., Biswas A., Yildirim Y., Moshokoa S.P., Khan S., Alghamdi A.A. (2023) Optical soliton for the concatenation model with Kudryashov’s approaches, Ukr. J. Phys. Opt. 24, 2, 155–160. [NASA ADS] [CrossRef] [Google Scholar]
  7. Triki H., Sun Y., Zhou Q., Biswas A., Yıldırım Y., Alshehri H.M. (2022) Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects, Chaos Solitons Fractals 164, 112622. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang M.-Y., Biswas A., Yıldırım Y., Moraru L., Moldovanu S., Alshehri H.M. (2023) Optical solitons for a concatenation model by trial equation approach, Electronics 12, 1, Article 19. [Google Scholar]
  9. Kudryashov N.A., Biswas A., Borodina A.G., Yildirim Y., Alshehri H.M. (2023) Painleve analysis and optical solitons for a concatenated model, Optik 272, 170255. [NASA ADS] [CrossRef] [Google Scholar]
  10. Yıldırım Y., Biswas A., Moraru L., Alghamdi A.A. (2023) Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion, Mathematics 11, 7, Article 1709. [Google Scholar]
  11. Zhou Q., Huang Z., Sun Y., Triki H., Liu W., Biswas A. (2023) Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlinear Dyn. 111, 6, 5757–5765. [CrossRef] [Google Scholar]
  12. Zhou Q., Triki H., Xu J., Zeng Z., Liu W., Biswas A. (2022) Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos, Solitons & Fractals 160, 112198. [NASA ADS] [CrossRef] [Google Scholar]
  13. Zhou Q., Xu M., Sun Y., Zhong Y., Mirzazadeh M. (2022) Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons, Nonlinear Dyn. 110, 2, 1747–1752. [CrossRef] [Google Scholar]
  14. Zhou Q., Zhong Y., Triki H., Sun Y., Xu S., Liu W., Biswas A. (2022) Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chin. Phys. Lett. 39, 4, 044202. [NASA ADS] [CrossRef] [Google Scholar]
  15. Zhong Y., Triki H., Zhou Q. (2023) Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential, Commun. Theor. Phys. 75, 025003. [NASA ADS] [CrossRef] [Google Scholar]
  16. Ding C.C., Zhou Q., Triki H., Sun Y., Biswas A. (2023) Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation, Nonlinear Dyn. 111, 3, 2621–2629. [CrossRef] [Google Scholar]
  17. Kudryashov N.A. (2021) Model of propagation pulses in an optical fiber with a new law of refractive indices, Optik 248, 168160. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kudryashov N.A. (2021) Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik 206, 164335. [Google Scholar]
  19. Bayram M. (2022) Optical bullets with Biswas-Milovic equation having Kerr and parabolic laws of nonlinearity, Optik 270, 170046. [NASA ADS] [CrossRef] [Google Scholar]
  20. Belyaeva T.L., Agüero M.A., Serkin V.N. (2021) Nonautonomous solitons of the novel nonlinear Schrödinger equation: Self-compression, amplification, and the bound state decay in external potentials, Optik 244, 167584. [NASA ADS] [CrossRef] [Google Scholar]
  21. Serkin V.N., Ramirez A., Belyaeva T.L. (2019) Nonlinear-optical analogies to the Moses sea parting effect: Dark soliton in forbidden dispersion or nonlinearity, Optik 192, 162928. [NASA ADS] [CrossRef] [Google Scholar]
  22. Tang L. (2021) Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. To appear in Journal of Optics. https://doi.org/10.1007/s12596-023-01097-x. [Google Scholar]
  23. Wang M.-Y. (2021) Optical solitons of the perturbed nonlinear Schrödinger equation in Kerr media, Optik 243, 167382. [NASA ADS] [CrossRef] [Google Scholar]
  24. Wang M.-Y. (2022) Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power law nonlinear, Optik 267, 169631. [NASA ADS] [CrossRef] [Google Scholar]
  25. Wang M.-Y. (2022) Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity, Results Phys. 33, 105077. [NASA ADS] [CrossRef] [Google Scholar]
  26. Wang T.Y., Zhou Q., Liu W.J. (2022) Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers, Chin. Phys. B 31, 020501. [NASA ADS] [CrossRef] [Google Scholar]
  27. Secer A. (2022) Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik 268, 169831. [NASA ADS] [CrossRef] [Google Scholar]
  28. Wang H., Zhou Q., Liu W. (2022) Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose–Einstein condensation, J. Adv. Res. 38, 179–190. [CrossRef] [Google Scholar]
  29. Wazwaz A.-M. (2021) Bright and dark optical solitons for (3 + 1)-dimensional Schrödinger equation with cubic–quintic–septic nonlinearities, Optik 225, 165752. [NASA ADS] [CrossRef] [Google Scholar]
  30. Wazwaz A.-M. (2022) Bright and dark optical solitons of the (2 + 1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers, Optik 251, 168334. [NASA ADS] [CrossRef] [Google Scholar]
  31. Zayed E.M.E., El-Horbaty M., Alngar M.E.M., El-Shater M. (2022) Dispersive optical solitons for stochastic Fokas–Lenells equation with multiplicative white noise, Eng 3, 4, 523–540. [CrossRef] [Google Scholar]
  32. Zhou Q. (2022) Influence of parameters of optical fibers on optical soliton interactions, Chin. Phys. Lett. 39, 1, 010501. [NASA ADS] [CrossRef] [Google Scholar]
  33. Zhou Q., Sun Y., Triki H., Zhong Y., Zeng Z., Mirzazadeh M. (2022) Study on propagation properties of one-soliton in a multimode fiber with higher-order effects, Results Phys. 41, 105898. [NASA ADS] [CrossRef] [Google Scholar]
  34. Zhou Q., Luan Z., Zeng Z., Zhong Y. (2022) Effective amplification of optical solitons in high power transmission systems, Nonlinear Dyn. 109, 4, 3083–3089. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.