Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 40
Number of page(s) 15
DOI https://doi.org/10.1051/jeos/2023038
Published online 01 November 2023
  1. Agrawal G.P. (2000) Nonlinear fiber optics, Nonlinear Science at the Dawn of the 21st Century, Springer, Berlin, Heidelberg, pp. 195–211. [NASA ADS] [CrossRef] [Google Scholar]
  2. Katzir A. (2012) Lasers and optical fibers in medicine, in: Physical Techniques in Biology and Medicine, Elsevier Science. [Google Scholar]
  3. Minakuchi S., Takeda N. (2013) Recent advancement in optical fiber sensing for aerospace composite structures, Photon. Sens. 3, 345–354. [NASA ADS] [CrossRef] [Google Scholar]
  4. Schartner E.P., Tsiminis G., François A., Kostecki R., Warren-Smith S.C., Nguyen L.V., Heng S., Reynolds T., Klantsataya E., Rowland K.J., et al. (2015) Taming the light in microstructured optical fibers for sensing, Int. J. Appl. Glass Sci. 6, 229–239. [CrossRef] [Google Scholar]
  5. De Angelis C. (2021) Nonlinear optics, Front. Photon. 1, 628215. [CrossRef] [Google Scholar]
  6. Pal B.P. (2005) Guided wave optical components and devices: basics, technology, and applications, Indian Institute of Technology, Delhi, India. [Google Scholar]
  7. Zhongwei T., Chao L. (2020) Optical fiber communication technology: Present status and prospect, Strategic Study CAE 22, 100–107. [CrossRef] [Google Scholar]
  8. Kaminow I.P., Li T. (2002) Optical fiber telecommunications IV-B: systems and impairments, in: Optics and Photonics, Elsevier Science. [Google Scholar]
  9. Utzinger U., Richards-Kortum R.R. (2003) Fiber optic probes for biomedical optical spectroscopy, J. Biomed. Opt. 8, 121–147. [NASA ADS] [CrossRef] [Google Scholar]
  10. Yariv A., Yeh P. (2007) Photonics: optical electronics in modern communications, Oxford University Press. [Google Scholar]
  11. Bufetov I.A., Melkumov M.A., Firstov S.V., Riumkin K.E., Shubin A.V., Khopin V.F., Guryanov A.N., Dianov E.M. (2014) Bi-doped optical fibers and fiber lasers. IEEE J. Sel. Top. Quantum Electron. 20, 111–125. [NASA ADS] [CrossRef] [Google Scholar]
  12. Rajan G. (2017) Optical fiber sensors: advanced techniques and applications, CRC Press. [CrossRef] [Google Scholar]
  13. Addanki S., Amiri I.S., Yupapin P. (2018) Review of optical fibers-introduction and applications in fiber lasers, Results Phys. 10, 743–750. [NASA ADS] [CrossRef] [Google Scholar]
  14. Biswas A., Ekici M., Sonmezoglu A., Belic M.R. (2019) Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic–cubic nonlinearity by extended trial function method, Optik 185, 50–56. [NASA ADS] [CrossRef] [Google Scholar]
  15. Zayed E.M., Alngar M.E., Biswas A., Triki H., Yıldırım Y., Alshomrani A.S. (2020) Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic nonlinearity by sub-ODE approach, Optik 203, 163993. [NASA ADS] [CrossRef] [Google Scholar]
  16. Zayed E., Alngar M., Biswas A., Ekici M., Alzahrani A., Belic M. (2020) Chirped and chirp-free optical solitons in fiber Bragg gratings with Kudryashov’s model in presence of dispersive reflectivity, J. Commun. Technol. Electron. 65, 1267–1287. [Google Scholar]
  17. Yıldırım Y., Biswas A., Guggilla P., Khan S., Alshehri H.M., Belic M.R. (2021) Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities, Ukr. J. Phys. Opt. 22, 239–254. [CrossRef] [Google Scholar]
  18. Malik S., Kumar S., Biswas A., Ekici M., Dakova A., Alzahrani A.K., Belic M.R. (2021) Optical solitons and bifurcation analysis in fiber Bragg gratings with Lie symmetry and Kudryashov’s approach, Nonlinear Dyn. 105, 735–751. [Google Scholar]
  19. Yıldırım Y., Biswas A., Khan S., Guggilla P., Alzahrani A.K., Belic M.R. (2021) Optical solitons in fiber Bragg gratings with dispersive reflectivity by sine-Gordon equation approach, Optik 237, 166684. [CrossRef] [Google Scholar]
  20. Al-Ghafri K.S., Sankar M., Krishnan E.V., Khan S., Biswas A. (2023) Chirped gap solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index, Journal of the European Optical Society 19, .30 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Zhong Y., Triki H., Zhou Q. (2023) Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential., Commun. Theoret. Phys. 75, 025003. [NASA ADS] [CrossRef] [Google Scholar]
  22. Zhou Q., Triki H., Xu J., Zeng Z., Liu W., Biswas A. (2022) Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos Solitons Fractals 160, 112198. [NASA ADS] [CrossRef] [Google Scholar]
  23. Zhou Q., Zhong Y., Triki H., Sun Y., Xu S., Liu W., Biswas A. (2022) Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chin. Phys. Lett. 39, 044202. [NASA ADS] [CrossRef] [Google Scholar]
  24. Zhou Q. (2022) Influence of parameters of optical fibers on optical soliton interactions, Chin. Phys. Lett. 39, 010501. [NASA ADS] [CrossRef] [Google Scholar]
  25. Zhou Q., Huang Z., Sun Y., Triki H., Liu W., Biswas A. (2023) Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlin. Dynamics 111, 5757–5765. [CrossRef] [Google Scholar]
  26. Sun Y., Hu Z., Triki H., Mirzazadeh M., Liu W., Biswas A., Zhou Q. (2023) Analytical study of three-soliton interactions with different phases in nonlinear optics, Nonlin. Dyn. 111, 18391–18400. [CrossRef] [Google Scholar]
  27. Zhou Q., Sun Y., Triki H., Zhong Y., Zeng Z., Mirzazadeh M. (2022) Study on propagation properties of one-soliton in a multimode fiber with higher-order effects, Results Phys., 41, 105898. [NASA ADS] [CrossRef] [Google Scholar]
  28. Kudryashov N.A. (2019) A generalized model for description of propagation pulses in optical fiber, Optik 189, 42–52. [NASA ADS] [CrossRef] [Google Scholar]
  29. Biswas A., Sonmezoglu A., Ekici M., Alshomrani A.S., Belic M.R. (2019) Optical solitons with Kudryashov’s equation by F-expansion, Optik 199, 163338. [NASA ADS] [CrossRef] [Google Scholar]
  30. Biswas A., Vega-Guzmán J., Ekici M., Zhou Q., Triki H., Alshomrani A.S., Belic M.R. (2020) Optical solitons and conservation laws of Kudryashov’s equation using undetermined coefficients, Optik 202, 163417. [CrossRef] [Google Scholar]
  31. Kumar S., Malik S., Biswas A., Zhou Q., Moraru L., Alzahrani A., Belic M. (2020) Optical solitons with Kudryashov’s equation by Lie symmetry analysis, Phys. Wave Phenom. 28, 299–304. [NASA ADS] [CrossRef] [Google Scholar]
  32. Arnous A.H., Biswas A., Ekici M., Alzahrani A.K., Belic M.R. (2021) Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function, Optik 225, 165406. [NASA ADS] [CrossRef] [Google Scholar]
  33. Zayed E.M., Alngar M.E. (2021) Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms, Math. Methods Appl. Sci. 44, 315–324. [NASA ADS] [CrossRef] [Google Scholar]
  34. Hu X., Yin Z. (2022) A study of the pulse propagation with a generalized Kudryashov equation, Chaos, Solitons Fractals 161, 112379. [NASA ADS] [CrossRef] [Google Scholar]
  35. Khuri S., Wazwaz A.-M. (2023) Optical solitons and traveling wave solutions to Kudryashov’s equation, Optik 279, 170741. [NASA ADS] [CrossRef] [Google Scholar]
  36. Kumar S., Niwas M. (2023) Optical soliton solutions and dynamical behaviours of Kudryashov’s equation employing efficient integrating approach, Pramana 97, 98. [CrossRef] [Google Scholar]
  37. Kudryashov N.A., Antonova E.V. (2020) Solitary waves of equation for propagation pulse with power nonlinearities, Optik 217, 164881. [NASA ADS] [CrossRef] [Google Scholar]
  38. Kudryashov N.A. (2020) Mathematical model of propagation pulse in optical fiber with power nonlinearities, Optik 212, 164750. [NASA ADS] [CrossRef] [Google Scholar]
  39. Kudryashov N.A. (2020) Optical solitons of mathematical model with arbitrary refractive index, Optik 224, 165391. [NASA ADS] [CrossRef] [Google Scholar]
  40. Zayed E., Alurrfi K. (2016) New extended auxiliary equation method and its applications to nonlinear Schrödinger-type equations, Optik 127, 9131–9151. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.