Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 41
Number of page(s) 10
Published online 01 November 2023
  1. Liu X., Peng X., Chen H., et al. (2012) Strategy for automatic and complete three-dimensional optical digitization, Opt. Lett. 37, 15, 3126–8. [NASA ADS] [CrossRef] [Google Scholar]
  2. Zhang P., Zhong K., Zhongwei L., et al. (2021) High dynamic range 3D measurement based on structured light: a review, Journal of Advanced Manufacturing Science and Technology 1, 2, 2021004–1–9. [CrossRef] [Google Scholar]
  3. Salahieh B., Chen Z., Rodriguez J.J., et al. (2014) Multi-polarization fringe projection imaging for high dynamic range objects, Optics Express 22, 8, 10064–10071. [NASA ADS] [CrossRef] [Google Scholar]
  4. Suresh V., Wang Y., Li B. (2018) High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device, Optics and Lasers in Engineering 107, 176–181. [NASA ADS] [CrossRef] [Google Scholar]
  5. Zhang S., Yau S.-T. (2009) High dynamic range scanning technique [J], Optical Engineering 48, 3, 033604–7. [NASA ADS] [CrossRef] [Google Scholar]
  6. Liu Y., Fu Y., Cai X., et al. (2020) A novel high dynamic range 3D measurement method based on adaptive fringe projection technique, Optics and Lasers in Engineering 128, 106004. [NASA ADS] [CrossRef] [Google Scholar]
  7. Liu Y., Fu Y., Zhuan Y., et al. (2021) High dynamic range real-time 3D measurement based on Fourier transform profilometry, Optics & Laser Technology 138, 106833. [NASA ADS] [CrossRef] [Google Scholar]
  8. Feng S., Zhang Y., Chen Q., et al. (2014) General solution for high dynamic range three dimensional shape measurement using the fringe projection technique, Optics and Lasers in Engineering 59, 56–71. [NASA ADS] [CrossRef] [Google Scholar]
  9. Jiang H., Zhao H., Li X. (2012) High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces, Optics and Lasers in Engineering 50, 10, 1484–1493. [NASA ADS] [CrossRef] [Google Scholar]
  10. Zhang S. (2020) Rapid and automatic optimal exposure control for digital fringe projection technique, Opt. Lasers Eng. 128, 106029. [NASA ADS] [CrossRef] [Google Scholar]
  11. Zhang C., Xu J., Xi N., et al. (2014) A robust surface coding method for optically challenging objects using structured light, IEEE Trans. Autom. Sci. Eng. 11, 3, 775–788. [CrossRef] [Google Scholar]
  12. Waddington C., Kofman J. (2010) Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting, Opt. Lasers Eng. 48, 2, 251–6. [NASA ADS] [CrossRef] [Google Scholar]
  13. Li D., Kofman J. (2014) Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement, Opt Express 22, 8, 9887–901. [NASA ADS] [CrossRef] [Google Scholar]
  14. Qi Z., Wang Z., Huang J., et al. (2018) Highlight removal based on the regional-projection fringe projection method, Opt. Eng. 57, 4, 041404. [NASA ADS] [Google Scholar]
  15. Lin H., Gao J., Mei Q., et al. (2016) Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement, Opt. Exp. 24, 7, 7703–18. [NASA ADS] [CrossRef] [Google Scholar]
  16. Chen C., Gao N., Wang X., et al. (2018) Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement, Opt. Commun. 410, 694–702. [NASA ADS] [CrossRef] [Google Scholar]
  17. Chen C., Gao N., Wang X., et al. (2018) Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection, Meas. Sci. Technol. 29, 5, 055203. [NASA ADS] [CrossRef] [Google Scholar]
  18. Wei B., Yanjun F., Kejun Z., et al. (2022) Rapid 3D measurement of colour objects based on three-channel sinusoidal fringe projection, J. Mod. Opt. 69, 13, 741–749. [NASA ADS] [CrossRef] [Google Scholar]
  19. Zhang Z., Towers C.E., Towers D.P. (2006) Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection, Opt. Exp. 14, 14, 6444–6455. [NASA ADS] [CrossRef] [Google Scholar]
  20. Zhu Q., Zhao H., Zhang C., et al. (2021) Point-to-point coupling and imbalance correction in color fringe projection profilometry based on multi-confusion matrix, Measurement Science and Technology 32, 11, 115202. [NASA ADS] [CrossRef] [Google Scholar]
  21. Sakashita K., Yagi Y., Sagawa R., et al. (2011) A system for capturing textured 3D shapes based on one-shot grid pattern with multi-band camera and infrared projector, in: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, China, Hangzhou, 16–19 May 2011, IEEE. 49–56. [Google Scholar]
  22. Lin H., Gao J., Mei Q., et al. (2017) Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment, Opt. Lasers Eng. 91, 206–15. [NASA ADS] [CrossRef] [Google Scholar]
  23. Babaie G., Abolbashari M., Farahi F. (2015) Dynamics range enhancement in digital fringe projection technique, Precis. Eng. 39, 243–51. [CrossRef] [Google Scholar]
  24. Lin H., Gao J., Mei Q., et al. (2016) Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement, Opt. Exp. 24, 7, 7703–7718. [NASA ADS] [CrossRef] [Google Scholar]
  25. Zuo C., Tao T., Feng S., et al. (2018) Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second, Opt. Lasers Eng. 102, 70–91. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.