Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 39
Number of page(s) 13
Published online 29 September 2023
  1. Dubois A., Levecq O., Azimani H., Davis A., Ogien J., Siret D., Barut A. (2018) Line-field confocal time domain optical coherence tomography with dynamic focusing, Opt. Exp. 26, 33534. [NASA ADS] [CrossRef] [Google Scholar]
  2. Dubois A., Levecq O., Azimani H., Siret D., Barut A., Suppa M., del Marmol V., Malvehy J., Cinotti E., Rubegni P., Perrot J.-L. (2018) Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors, J. Biomed. Opt. 23, 1. [CrossRef] [Google Scholar]
  3. Ogien J., Daures A., Cazalas M., Perrot J.-L., Dubois A. (2020) Line-field confocal optical coherence tomoraphy for three-dimensional skin imaging, Front. Optoelectron. 13, 381–392. [CrossRef] [Google Scholar]
  4. Ogien J., Levecq O., Azimani H., Dubois A. (2020) Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo, Biomed. Opt. Exp. 11, 1327. [CrossRef] [Google Scholar]
  5. Monnier J., Tognetti L., Miyamoto M., Suppa M., Cinotti E., Fontaine M., Perez J., Orte Cano C., Yélamos O., Puig S., Dubois A., Rubegni P., Marmol V., Malvehy J., Perrot J. (2020) In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography, J. Eur. Acad. Dermatol. Venereol. 34, 2914–2921. [CrossRef] [Google Scholar]
  6. Chauvel-Picard J., Bérot V., Tognetti L., Orte Cano C., Fontaine M., Lenoir C., Pérez-Anker J., Puig S., Dubois A., Forestier S., Monnier J., Jdid R., Cazorla G., Pedrazzani M., Sanchez A., Fischman S., Rubegni P., del Marmol V., Malvehy J., Cinotti E., Perrot J.L., Suppa M. (2022) Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: a pilot study, J. Biophotonics 15, e202100236. [CrossRef] [Google Scholar]
  7. Dejonckheere G., Suppa M., Marmol V., Meyer T., Stockfleth E. (2019) The actinic dysplasia syndrome – diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC, J. Eur. Acad. Dermatol. Venereol. 33, 16–20. [CrossRef] [Google Scholar]
  8. Suppa M., Fontaine M., Dejonckheere G., Cinotti E., Yélamos O., Diet G., Tognetti L., Miyamoto M., Orte Cano C., Perez-Anker J., Panagiotou V., Trepant A., Monnier J., Berot V., Puig S., Rubegni P., Malvehy J., Perrot J., Marmol V. (2021) Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study, J. Eur. Acad. Dermatol. Venereol. 35, 1099–1110. [CrossRef] [Google Scholar]
  9. Ruini C., Schuh S., Sattler E., Welzel J. (2021) Line-field confocal optical coherence tomography—practical applications in dermatology and comparison with established imaging methods, Skin Res. Technol. 27, 340–352. [CrossRef] [Google Scholar]
  10. Cinotti E., Tognetti L., Cartocci A., Lamberti A., Gherbassi S., Orte Cano C., Lenoir C., Dejonckheere G., Diet G., Fontaine M., Miyamoto M., Perez-Anker J., Solmi V., Malvehy J., Marmol V., Perrot J.L., Rubegni P., Suppa M. (2021) Line-field confocal optical coherence tomography for actinic keratosis and squamous cell carcinoma: a descriptive study, Clin. Exp. Dermatol. 46, 1530–1541. [CrossRef] [Google Scholar]
  11. Oliveira L.M.C., Tuchin V.V. (2019) The optical clearing method, in: SpringerBriefs in Physics, Springer International Publishing. [CrossRef] [Google Scholar]
  12. Chang S., Bowden A.K. (2019) Review of methods and applications of attenuation coefficient measurements with optical coherence tomography, J. Biomed. Opt. 24, 090901. [CrossRef] [Google Scholar]
  13. Liu S. (2017) Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images, J. Biomed. Opt. 22, 096004. [NASA ADS] [Google Scholar]
  14. Kut C., Chaichana K.L., Xi J., Raza S.M., Ye X., McVeigh E.R., Rodriguez F.J., Quiñones-Hinojosa A., Li X. (2015) Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography, Sci. Transl. Med. 7, 292ra100. [Google Scholar]
  15. Vermeer K.A., van der Schoot J., Lemij H.G., de Boer J.F. (2012) Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data, in: Manns F., Söderberg P.G., Ho A. (eds), Ophthalmic Technologies XXII, Vol. 8209, SPIE, pp. 79–84. [Google Scholar]
  16. Bus M., de Bruin D., Faber D., Kamphuis G., Zondervan P., Laguna-Pes M., van Leeuwen T., de Reijke T.M., de la Rosette J. (2016) Optical coherence tomography as a tool for in vivo staging and grading of upper urinary tract urothelial carcinoma: a study of diagnostic accuracy, J. Urol. 196, 1749–1755. [CrossRef] [Google Scholar]
  17. Boone M., Suppa M., Miyamoto M., Marneffe A., Jemec G., Del Marmol V. (2016) In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography, Biomed. Opt. Exp. 7, 2269. [CrossRef] [Google Scholar]
  18. Gong P., Almasian M., van Soest G., de Bruin D.M., van Leeuwen T.G., Sampson D.D., Faber D.J. (2020) Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation, J. Biomed. Opt. 25, 1. [CrossRef] [Google Scholar]
  19. Vermeer K.A., Mo J., Weda J.J.A., Lemij H.G., de Boer J.F. (2014) Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography, Biomed. Opt. Exp. 5, 322–337. [CrossRef] [Google Scholar]
  20. Gupta K., Shenoy M.R. (2018) Method to determine the anisotropy parameter g of a turbid medium, Appl. Opt. 57, 7559. [NASA ADS] [CrossRef] [Google Scholar]
  21. Thrane L., Yura H.T., Andersen P.E. (2000) Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle, J. Opt. Soc. Am. A 17, 484–490. [NASA ADS] [CrossRef] [Google Scholar]
  22. Turani Z., Fatemizadeh E., Blumetti T., Daveluy S., Moraes A.F., Chen W., Mehregan D., Andersen P.E., Nasiriavanaki M. (2019) Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma, Cancer Res. 79, 2021–2030. [CrossRef] [Google Scholar]
  23. Thrane L., Frosz M.H., Jørgensen T.M., Tycho A., Yura H.T., Andersen P.E. (2004) Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures, Opt. Lett. 29, 1641–1643. [NASA ADS] [CrossRef] [Google Scholar]
  24. Jacques S.L. (2013) Confocal laser scanning microscopy using scattering as the contrast mechanism, Springer, New York. [Google Scholar]
  25. Samatham R., Jacques S.L. (2009) Determine scattering coefficient and anisotropy of scattering of tissue phantoms using reflectance-mode confocal microscopy, in: Wax A., Backman V. (eds), Biomedical Applications of Light Scattering III, Vol. 7187, SPIE, pp. 152–159. [NASA ADS] [Google Scholar]
  26. Choudhury N., Jacques S.L. (2012) Extracting scattering coefficient and anisotropy factor of tissue using optical coherence tomography, in: Jansen E.D., Thomas R.J. (eds), Optical Interactions with Tissue and Cells XXIII, Vol. 8221, SPIE, pp. 144–148. [NASA ADS] [Google Scholar]
  27. Abi-Haidar D., Olivier T. (2009) Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging, J. Biomed. Opt. 14, 3, 034038. [NASA ADS] [CrossRef] [Google Scholar]
  28. Jacques S.L., Samatham R., Choudhury N., Fu Y., Levitz D. (2008) Measuring tissue optical properties in vivo using reflectance-mode confocal microscopy and OCT, in: Biomedical Applications of Light Scattering II, Vol. 6864, SPIE, pp. 57–64. [NASA ADS] [Google Scholar]
  29. Jacques S.L. (2013) Optical properties of biological tissues: a review, Phys. Med. Biol. 58, R37–R61. [CrossRef] [Google Scholar]
  30. Tuchin V.V. (1997) Light scattering study of tissues, Phys.-Uspekhi 40, 495–515. [NASA ADS] [CrossRef] [Google Scholar]
  31. Kono T., Yamada J. (2019) In vivo measurement of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths, Int. J. Thermophys. 40, 1–14. [NASA ADS] [CrossRef] [Google Scholar]
  32. [Google Scholar]
  33. Schneider F., Draheim J., Kamberger R., Wallrabe U. (2009) Process and material properties of polydimethyl siloxane (PDMS) for optical MEMS, Sens. Actuators A Phys. 151, 95–99. [CrossRef] [Google Scholar]
  34. Bodurov I., Vlaeva I., Viraneva A., Yovcheva T., Sainov S. (2016) Modified design of a laser refractometer, Nanosci. Nanotechnol. 16, 31–33. [Google Scholar]
  35. Ghosh G. (1999) Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. Commun. 163, 1, 95–102. [NASA ADS] [CrossRef] [Google Scholar]
  36. Sarkar S., Gupta V., Kumar M., Schubert J., Probst P.T., Joseph J., König T.A. (2019) Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating, ACS Appl. Mater. Interf. 11, 14, 13752–13760. PMID: 30874424. [CrossRef] [Google Scholar]
  37. Siefke T., Kroker S., Pfeiffer K., Puffky O., Dietrich K., Franta D., Ohlídal I., Szeghalmi A., Kley E.-B., Tünnermann A. (2016) Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range, Adv. Opt. Mater. 4, 11, 1780–1786. [CrossRef] [Google Scholar]
  38. Beek J.F., Blokland P., Posthumus P., Aalders M., Pickering J.W., Sterenborg H.J.C.M., van Gemert M.J.C. (1997) In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm, Phys. Med. Biol. 42, 2255–2261. [NASA ADS] [CrossRef] [Google Scholar]
  39. Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, J. Phys. D Appl. Phys. 38, 2543–2555. [NASA ADS] [CrossRef] [Google Scholar]
  40. Ionescu A.M., Cardona J.C., Garzón I., Oliveira A.C., Ghinea R., Alaminos M., Pérez M.M. (2015) Integrating-sphere measurements for determining optical properties of tissue-engineered oral mucosa, J. Eur. Opt. Soc. Rapid Publ. 10, 15012. [CrossRef] [Google Scholar]
  41. ul Rehman A., Ahmad I., Qureshi S.A. (2020) Biomedical applications of integrating sphere: a review, Photodiagnosis Photodyn. Ther. 31, 101712. [CrossRef] [Google Scholar]
  42. Pickering J.W., Prahl S.A., van Wieringen N., Beek J.F., Sterenborg H.J.C.M., van Gemert M.J.C. (1993) Double-integrating-sphere system for measuring the optical properties of tissue, Appl. Opt. 32, 399–410. [NASA ADS] [CrossRef] [Google Scholar]
  43. Prahl S. (2011) Optical property measurements using the inverse adding doubling program, Technical Report. [Google Scholar]
  44. Carminati R., Schotland J.C. (2021) Principles of scattering and transport of light, Cambridge University Press. [CrossRef] [Google Scholar]
  45. L.V. Wang and Wang H.I. (2007) Biomedical optics: principles and imaging. [Google Scholar]
  46. Faber D.J., van der Meer F.J., Aalders M.C.G., van Leeuwen T.G. (2004) Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography, Opt. Exp. 12, 4353. [NASA ADS] [CrossRef] [Google Scholar]
  47. Turchin I.V., Sergeeva E.A., Dolin L.S., Kamensky V.A., Shakhova N.M., Richards-Kortum R.R. (2005) Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies, J. Biomed. Opt. 10, 6, 064024. [NASA ADS] [CrossRef] [Google Scholar]
  48. Ghafaryasl B., Vermeer K., Kalkman J., Callewaert T., de Boer J., Vliet L.V. (2021) Attenuation coefficient estimation in fourier-domain oct of multi-layered phantoms, Biomed. Opt. Exp. 12, 2744–2758. [CrossRef] [Google Scholar]
  49. Wilson B.C. (1995) Measurement of tissue optical properties: methods and theories, Springer, US. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.