Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 30
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2023025
Published online 08 June 2023
  1. Pal B.P. (2005) Guided wave optical components and devices: basics, technology, and applications, Indian Institute of Technology, Delhi, India. [Google Scholar]
  2. Zhongwei T., Chao L. (2020) Optical fiber communication technology: Present status and prospect, Strategic Study of CAE 22, 100–107. [Google Scholar]
  3. Yariv A., Yeh P. (2007) Photonics: optical electronics in modern communications, Oxford University Press. [Google Scholar]
  4. Mollenauer L.F., Stolen R.H., Gordon J.P. (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1095. [NASA ADS] [CrossRef] [Google Scholar]
  5. Shiojiri E., Fujii Y. (1985) Transmission capability of an optical fiber communication system using index nonlinearity, Appl. Opt. 24, 358–360. [NASA ADS] [CrossRef] [Google Scholar]
  6. Porsezian K., Nakkeeran K. (1996) Optical solitons in presence of Kerr dispersion and self-frequency shift, Phys. Rev. Lett. 76, 3955. [NASA ADS] [CrossRef] [Google Scholar]
  7. Hasegawa A., Matsumoto M. (2003) Information transfer in optical fibers and evolution of the lightwave packet, Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 19–40. [Google Scholar]
  8. Marin-Palomo P., Kemal J.N., Karpov M., Kordts A., Pfeifle J., Pfeiffer M.H.P., Trocha P., Wolf S., Brasch V., Anderson M.H., Rosenberger R., Vijayan K., Freude W., Kippenberg T.J., Koos C. (2017) Microresonator-based solitons for massively parallel coherent optical communications, Nature 546, 274–279. [CrossRef] [PubMed] [Google Scholar]
  9. Doran N., Blow K. (1983) Solitons in optical communications, IEEE J. Quantum Elect. 19, 1883–1888. [NASA ADS] [CrossRef] [Google Scholar]
  10. Agrawal G.P. (1995) Nonlinear fiber optics: quantum electronics – principles and applications, Academic Press, New York. [Google Scholar]
  11. Hamann W.F., Glick H.A. (1996) Integrated diagnostics for Navy fiber optic systems. SPIE 2594, 2–19. [NASA ADS] [Google Scholar]
  12. Radhakrishnan R., Kundu A., Lakshmanan M. (1999) Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media, Phys. Rev. E 60, 3314. [NASA ADS] [CrossRef] [Google Scholar]
  13. Huang G., Deng L., Payne M. (2005) Dynamics of ultraslow optical solitons in a cold three-state atomic system, Phys. Rev. E 72, 016617. [NASA ADS] [CrossRef] [Google Scholar]
  14. Amit Goyal A., Gupta R., Kumar C.N., Raju T.S. (2011) Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift, Phys. Rev. A 84, 063830. [NASA ADS] [CrossRef] [Google Scholar]
  15. Li M., Xu T., Wang L. (2015) Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers, Nonlinear Dyn. 80, 1451–1461. [Google Scholar]
  16. Liu W., Zhang Y., Luan Z., Zhou Q., Mirzazadeh M., Ekici M., Biswas A. (2019) Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers, Nonlinear Dyn. 96, 729–736. [Google Scholar]
  17. Biswas A., Ekici M., Sonmezoglu A., Belic M.R. (2019) Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic–cubic nonlinearity by extended trial function method, Optik 185, 50–56. [NASA ADS] [CrossRef] [Google Scholar]
  18. Darwish A., El-Dahab E.A., Ahmed H., Arnous A.H., Ahmed M.S., Biswas A., Guggilla P., Yıldırım Y., Mallawi F., Belic M.R. (2020) Optical solitons in fiber Bragg gratings via modified simple equation, Optik 203, 163886. [NASA ADS] [CrossRef] [Google Scholar]
  19. Zayed E.M., Alngar M.E., El-Horbaty M., Biswas A., Alshomrani A.S., Khan S., Ekici M., Triki H. (2020) Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach, Chinese J. Phys. 66, 187–205. [NASA ADS] [CrossRef] [Google Scholar]
  20. Yıldırım Y., Biswas A., Khan S., Guggilla P., Alzahrani A.K., Belic M.R. (2021) Optical solitons in fiber Bragg gratings with dispersive reflectivity by sine-Gordon equation approach, Optik 237, 166684. [CrossRef] [Google Scholar]
  21. Atai J., Malomed B.A. (2001) Families of Bragg-grating solitons in a cubic–quintic medium, Phys. Lett. A 284, 247–252. [NASA ADS] [CrossRef] [Google Scholar]
  22. Atai J., Malomed B.A. (2005) Gap solitons in Bragg gratings with dispersive reflectivity, Phys. Lett. A 342, 404–412. [CrossRef] [Google Scholar]
  23. Neill D.R., Atai J., Malomed B.A. (2008) Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity, J. Opt. A: Pure Appl. Opt. 10, 085105. [NASA ADS] [CrossRef] [Google Scholar]
  24. Dasanayaka S., Atai J. (2010) Stability of Bragg grating solitons in a cubic–quintic nonlinear medium with dispersive reflectivity, Phys. Lett. A 375, 225–229. [NASA ADS] [CrossRef] [Google Scholar]
  25. Baratali B., Atai J. (2012) Gap solitons in dual-core Bragg gratings with dispersive reflectivity, J. Opt. 14, 065202. [NASA ADS] [CrossRef] [Google Scholar]
  26. Chowdhury S.S., Atai J. (2014) Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity, IEEE J. Quantum Elect. 50, 458–465. [NASA ADS] [CrossRef] [Google Scholar]
  27. Jahirul Islam M., Atai J. (2017) Stability of Bragg grating solitons in a semilinear dual-core system with cubic–quintic nonlinearity, Nonlinear Dyn. 87, 1693–1701. [Google Scholar]
  28. Ahmed T., Atai J. (2017) Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity, Phys. Rev. E 96, 032222. [NASA ADS] [CrossRef] [Google Scholar]
  29. Biswas A., Ekici M., Sonmezoglu A., Belic M.R. (2019) Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method, Optik 182, 88–94. [NASA ADS] [CrossRef] [Google Scholar]
  30. Biswas A., Vega-Guzman J., Mahmood M.F., Khan S., Zhou Q., Moshokoa S.P., Belic M. (2019) Solitons in optical fiber Bragg gratings with dispersive reflectivity, Optik 182, 119–123. [NASA ADS] [CrossRef] [Google Scholar]
  31. Kudryashov N.A. (2020) Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity, Chinese J. Phys. 66, 401–405. [NASA ADS] [CrossRef] [Google Scholar]
  32. Zayed E.M., Alngar M.E., Biswas A., Triki H., Yıldırım Y., Alshomrani A.S. (2020) Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic nonlinearity by sub-ODE approach, Optik 203, 163993. [NASA ADS] [CrossRef] [Google Scholar]
  33. Zayed E., Alngar M., Biswas A., Ekici M., Alzahrani A., Belic M. (2020) Chirped and chirp-free optical solitons in fiber Bragg gratings with Kudryashov’s model in presence of dispersive reflectivity, J. Commun. Technol. Electron. 65, 1267–1287. [Google Scholar]
  34. Yıldırım Y., Biswas A., Guggilla P., Khan S., Alshehri H.M., Belic M.R. (2021) Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities, Ukr. J. Phys. Opt. 22, 239–254. [CrossRef] [Google Scholar]
  35. Malik S., Kumar S., Biswas A., Ekici M., Dakova A., Alzahrani A.K., Belic M.R. (2021) Optical solitons and bifurcation analysis in fiber Bragg gratings with lie symmetry and Kudryashov’s approach, Nonlinear Dyn. 105, 735–751. [Google Scholar]
  36. Zhou Q., Triki H., Xu J., Zeng Z., Liu W., Biswas A. (2022) Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos Solit. Fractals 160, 112198. [Google Scholar]
  37. Zhou Q., Zhong Y., Triki H., Sun Y., Xu S., Liu W., Biswas A. (2022) Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chinese Phys. Lett. 39, 044202. [NASA ADS] [CrossRef] [Google Scholar]
  38. Mansouri F., Aouadi S., Triki H., Sun Y., Yıldırım Y., Biswas A., Alshehri H.M., Zhou Q. (2022) Chirped localized pulses in a highly nonlinear optical fiber with quintic non-Kerr nonlinearities, Results Phys. 43, 106040. [NASA ADS] [CrossRef] [Google Scholar]
  39. Triki H., Sun Y., Biswas A., Zhou Q., Yıldırım Y., Zhong Y., Alshehri H.M. (2022) On the existence of chirped algebraic solitary waves in optical fibers governed by Kundu-Eckhaus equation, Results Phys. 34, 105272. [NASA ADS] [CrossRef] [Google Scholar]
  40. Zhong Y., Triki H., Zhou Q. (2023) Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential, Commun. Theor. Phys. 75, 025003. [NASA ADS] [CrossRef] [Google Scholar]
  41. Triki H., Zhou Q., Liu W., Biswas A., Moraru L., Yıldırım Y., Alshehri H.M., Belic M.R. (2022) Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system, Chaos Solit. Fractals 155, 111751. [Google Scholar]
  42. Mecelti A., Triki H., Azzouzi F., Wei X., Biswas A., Yıldırım Y., Alshehri H.M., Zhou Q. (2022) New chirped gray and kink self–similar waves in presence of quintic nonlinearity and self–steepening effect, Phys. Lett. A 437, 128104. [NASA ADS] [CrossRef] [Google Scholar]
  43. Daoui A.K., Messouber A., Triki H., Zhou Q., Biswas A., Liu W., Alzahrani A.K., Belic M.R. (2021) Propagation of chirped periodic and localized waves with higher-order effects through optical fibers, Chaos Solit. Fractals 146, 110873. [Google Scholar]
  44. Triki H., Benlalli A., Zhou Q., Biswas A., Ekici M., Alzahrani A.K., Xu S.-L., Belic M.R. (2021) Formation of chirped kink similaritons in non-Kerr media with varying Raman effect, Results Phys. 26, 104381. [NASA ADS] [CrossRef] [Google Scholar]
  45. Triki H., Zhou Q., Biswas A., Liu W., Yıldırım Y., Alshehri H.M., Belic M.R. (2021) Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion, Phys. Lett. A 417, 127698. [NASA ADS] [CrossRef] [Google Scholar]
  46. Zhou Q., Huang Z., Sun Y., Triki H., Liu W., Biswas A. (2023) Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlinear Dyn. 111, 5757–5765. [CrossRef] [Google Scholar]
  47. Zayed E.M., Alngar M.E., Biswas A., Ekici M., Triki H., Alzahrani A.K., Belic M.R. (2020) Chirped and chirp-free optical solitons in fiber Bragg gratings having dispersive reflectivity with polynomial form of nonlinearity using sub-ode approach, Optik 204, 164096. [NASA ADS] [CrossRef] [Google Scholar]
  48. Seadawy A.R., Ahmed H.M., Rabie W.B., Biswas A. (2021) Chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having polynomial law of nonlinearity, Optik 225, 165681. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.