Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 31
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2023028
Published online 08 June 2023
  1. Ayad N.M.E., Kaushik S., Weaver V.M. (2019) Tissue mechanics, an important regulator of development and disease, Philos. Trans. Roy. Soc. B: Biol. Sci. 374, 20180215. https://doi.org/10.1098/rstb.2018.0215. [CrossRef] [Google Scholar]
  2. Mukund K., Subramaniam S. (2020) Skeletal muscle: A review of molecular structure and function, in health and disease, WIREs Syst. Biol. Med. 12, e1462. https://doi.org/10.1002/wsbm.1462. [Google Scholar]
  3. Shirwany N.A., Zou M.-H. (2010) Arterial stiffness: A brief review, Acta Pharmacol. Sin. 31, 1267–1276. https://doi.org/10.1038/aps.2010.123. [Google Scholar]
  4. Spronck B., Humphrey J.D. (2019) Arterial stiffness: Different metrics, different meanings, J. Biomech. Eng. 141, 0910041–09100412. https://doi.org/10.1115/1.4043486. [Google Scholar]
  5. Bilston L.E., Tan K. (2015) Measurement of passive skeletal muscle mechanical properties in vivo: Recent progress, clinical applications, and remaining challenges, Ann. Biomed. Eng. 43, 261–273. https://doi.org/10.1007/s10439-014-1186-2. [CrossRef] [Google Scholar]
  6. Kennedy B.F., Wijesinghe P., Sampson D.D. (2017) The emergence of optical elastography in biomedicine, Nat. Photon. 11, 215–221. https://doi.org/10.1038/nphoton.2017.6. [NASA ADS] [CrossRef] [Google Scholar]
  7. Scarcelli G., Yun S.H. (2007) Confocal Brillouin microscopy for three-dimensional mechanical imaging, Nat. Photon. 2, 39–43. https://doi.org/10.1038/nphoton.2007.250. [Google Scholar]
  8. Antonacci G., Beck T., Bilenca A., Czarske J., Elsayad K., Guck J., Kim K., Krug B., Palombo F., Prevedel R., Scarcelli G. (2020) Recent progress and current opinions in Brillouin microscopy for life science applications, Biophys. Rev. 12, 615–624. https://doi.org/10.1007/s12551-020-00701-9. [Google Scholar]
  9. Poon C., Chou J., Cortie M., Kabakova I. (2021) Brillouin imaging for studies of micromechanics in biology and biomedicine: from current state-of-the-art to future clinical translation, J. Phys.: Photon. 3, 012002. https://doi.org/10.1088/2515-7647/abbf8c. [Google Scholar]
  10. Elsayad K., Polakova S., Gregan J. (2019) Probing mechanical properties in biology using Brillouin microscopy, Trends Cell Biol. 29, 608–611. https://doi.org/10.1016/j.tcb.2019.04.002. [CrossRef] [Google Scholar]
  11. Mattana S., Caponi S., Tamagnini F., Fioretto D., Palombo F. (2017) Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis, J. Innov. Opt. Health Sci. 10, 1742001. https://doi.org/10.1142/S1793545817420019. [Google Scholar]
  12. Antonacci G., Pedrigi R.M., Kondiboyina A., Mehta V.V., De Silva R., Paterson C., Krams R., Török P. (2015) Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma, J. R. Soc. Interf. 12, 20150843. https://doi.org/10.1098/rsif.2015.0843. [Google Scholar]
  13. Cikes D., Elsayad K., Sezgin E., Koitai E., Ferenc T., Orthofer M., Yarwood R., Heinz L.X., Sedlyarov V., Miranda N.D., Taylor A., Grapentine S., al-Murshedi F., Abott A., Weidinger A., Kutchukian C., Sanchez C., Cronin S.J.F., Novatchkova M., Kavirayani A., Schuetz T., Haubner B., Haas L., Hagelkruys A., Jackowski S., Kozlov A., Jacquemond V., Knauf C., Superti-Furga G., Rullman E., Gustafsson T., McDermot J., Lowe M., Radak Z., Chamberlain J.S., Bakovic M., Banka S., Penninger J.M. (2022) Critical role of PCYT2 in muscle health and aging, bioRxiv, 2022.2003.2002.482658. https://doi.org/10.1038/s42255-023-00766-2. [Google Scholar]
  14. Conrad C., Gray K.M., Stroka K.M., Rizvi I., Scarcelli G. (2019) Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy, Cell Mol. Bioeng. 12, 215–226. https://doi.org/10.1007/s12195-019-00570-7. [Google Scholar]
  15. Rix J., Uckermann O., Kirsche K., Schackert G., Koch E., Kirsch M., Galli R. (2022) Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells, J. Roy. Soc. Interf. 19, 20220209. https://doi.org/10.1098/rsif.2022.0209. [CrossRef] [Google Scholar]
  16. Zhang J., Raghunathan R., Rippy J., Wu C., Finnell R.H., Larin K.V., Scarcelli G. (2019) Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography, Birth Defects Res. 111, 991–998. https://doi.org/10.1002/bdr2.1389. [Google Scholar]
  17. Rioboó R.J.J., Gontán N., Sanderson D., Desco M., Gómez-Gaviro M.V. (2021) Brillouin spectroscopy: From biomedical research to new generation pathology diagnosis, Int. J. Mol. Sci. 22, 8055. [CrossRef] [Google Scholar]
  18. Troyanova-Wood M., Meng Z., Yakovlev V.V. (2019) Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy, Biomed. Opt. Express 10, 1774–1781. https://doi.org/10.1364/BOE.10.001774. [Google Scholar]
  19. Besner S., Scarcelli G., Pineda R., Yun S.H. (2016) In vivo Brillouin analysis of the aging crystalline lens, Invest. Ophthalmol. Vis. Sci. 57, 5093–5100. https://doi.org/10.1167/iovs.16-20143. [CrossRef] [Google Scholar]
  20. Scarcelli G., Yun S.H. (2012) In vivo Brillouin optical microscopy of the human eye, Opt. Express 20, 9197–9202. https://doi.org/10.1364/OE.20.009197. [NASA ADS] [CrossRef] [Google Scholar]
  21. Kabakova I., Xiang Y., Paterson C., Török P. (2017) Fiber-integrated Brillouin microspectroscopy: Towards Brillouin endoscopy, J. Innov. Opt. Health Sci. 10, 1742002. https://doi.org/10.1142/S1793545817420020. [Google Scholar]
  22. Berne B.J., Pecora R. (2000) Dynamic light scattering: With applications to chemistry, biology, and physics, Dover Publications, New York, USA. [Google Scholar]
  23. Palombo F., Fioretto D. (2019) Brillouin light scattering: Applications in biomedical sciences, Chem. Rev. 119, 7833–7847. https://doi.org/10.1021/acs.chemrev.9b00019. [Google Scholar]
  24. Palombo F., Winlove C.P., Edginton R.S., Green E., Stone N., Caponi S., Madami M., Fioretto D. (2014) Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering, J. R. Soc. Interf. 11, 20140739. https://doi.org/10.1098/rsif.2014.0739. [Google Scholar]
  25. Wu P.J., Kabakova I.V., Ruberti J.W., Sherwood J.M., Dunlop I.E., Paterson C., Török P., Overby D.R. (2018) Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials, Nat. Methods 15, 561–562. https://doi.org/10.1038/s41592-018-0076-1. [CrossRef] [Google Scholar]
  26. Andriotis O.G., Elsayad K., Smart D.E., Nalbach M., Davies D.E., Thurner P.J. (2019) Hydration and nanomechanical changes in collagen fibrils bearing advanced glycation end-products, Biomed. Opt. Express 10, 1841–1855. https://doi.org/10.1364/BOE.10.001841. [CrossRef] [Google Scholar]
  27. Bailey M., Alunni-Cardinali M., Correa N., Caponi S., Holsgrove T., Barr H., Stone N., Winlove C.P., Fioretto D., Palombo F. (2020) Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics. Science, Advances 6, eabc1937. https://doi.org/10.1126/sciadv.abc1937. [Google Scholar]
  28. Adichtchev S.V., Karpegina Y.A., Okotrub K.A., Surovtseva M.A., Zykova V.A., Surovtsev N.V. (2019) Brillouin spectroscopy of biorelevant fluids in relation to viscosity and solute concentration, Phys. Rev. E 99, 062410. https://doi.org/10.1103/PhysRevE.99.062410. [NASA ADS] [CrossRef] [Google Scholar]
  29. Scarcelli G., Kling S., Quijano E., Pineda R., Marcos S., Yun S.H. (2013) Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus, Invest. Ophthalmol. Vis. Sci. 54, 1418–1425. https://doi.org/10.1167/iovs.12-11387. [CrossRef] [Google Scholar]
  30. Tao N.J., Lindsay S.M., Rupprecht A. (1988) Dynamic coupling between DNA and its primary hydration shell studied by Brillouin scattering, Biopolymers 27, 1655–1671. https://doi.org/10.1002/bip.360271010. [Google Scholar]
  31. Lee S.A., Lindsay S.M., Powell J.W., Weidlich T., Tao N.J., Lewen G.D., Rupprecht A. (1987) A Brillouin scattering study of the hydration of Li- and Na-DNA films, Biopolymers 26, 1637–1665. https://doi.org/10.1002/bip.360261002. [CrossRef] [Google Scholar]
  32. Scarcelli G., Polacheck W.J., Nia H.T., Patel K., Grodzinsky A.J., Kamm R.D., Yun S.H. (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy, Nat. Methods 12, 1132–1134. https://doi.org/10.1038/nmeth.3616. [CrossRef] [Google Scholar]
  33. Samalova M., Elsayad K., Melnikava A., Peaucelle A., Gahurova E., Gumulec J., Spyroglou I., Zemlyanskaya E.V., Ubogoeva E.V., Hejatko J. (2020) Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis, bioRxiv, 2020.2006.2025.170969. https://doi.org/10.1093/plphys/kiad228. [Google Scholar]
  34. Pethig R., Kell D.B. (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol. 32, 933. https://doi.org/10.1088/0031-9155/32/8/001. [NASA ADS] [CrossRef] [Google Scholar]
  35. Carlton A., Orr R.M. (2015) The effects of fluid loss on physical performance: A critical review, J. Sport Health Sci. 4, 357–363. https://doi.org/10.1016/j.jshs.2014.09.004. [Google Scholar]
  36. Ross K.F.A., Gordon R.E. (1982) Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance, J. Microscopy 128, 7–21. https://doi.org/10.1111/j.1365-2818.1982.tb00433.x. [Google Scholar]
  37. Lacevic N.M., Sader J.E. (2016) Viscoelasticity of glycerol at ultra-high frequencies investigated via molecular dynamics simulations, J. Chem. Phys. 144. 054502. https://doi.org/10.1063/1.4940146. [NASA ADS] [CrossRef] [Google Scholar]
  38. Remer I., Shaashoua R., Shemesh N., Ben-Zvi A., Bilenca A. (2020) High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy, Nat. Methods 17, 913–916. https://doi.org/10.1038/s41592-020-0882-0. [CrossRef] [Google Scholar]
  39. Krug B., Koukourakis N., Czarske J.W. (2019) Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels, Opt. Express 27, 26910–26923. https://doi.org/10.1364/OE.27.026910. [CrossRef] [Google Scholar]
  40. Elsayad K., Werner S., Gallemí M., Kong J., Sánchez Guajardo E.R., Zhang L., Jaillais Y., Greb T., Belkhadir Y. (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging, Sci. Signal 9, rs5. https://doi.org/10.1126/scisignal.aaf6326. [Google Scholar]
  41. Meng Z., Traverso A.J., Yakovlev V.V. (2014) Background clean-up in Brillouin microspectroscopy of scattering medium, Opt. Express 22, 5410–5415. https://doi.org/10.1364/OE.22.005410. [NASA ADS] [CrossRef] [Google Scholar]
  42. Edrei E., Gather M.C., Scarcelli G. (2017) Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging, Opt. Express 25, 6895–6903. https://doi.org/10.1364/OE.25.006895. [NASA ADS] [CrossRef] [Google Scholar]
  43. Khan R., Gul B., Khan S., Nisar H., Ahmad I. (2021) Refractive index of biological tissues: Review, measurement techniques, and applications, Photodiagn. Photodyn. Ther. 33, 102192. https://doi.org/10.1016/j.pdpdt.2021.102192. [CrossRef] [Google Scholar]
  44. Annexes A.-D. (2009) Adult reference computational phantoms, Ann. ICRP 39, 47–70. https://doi.org/10.1016/j.icrp.2009.07.005. [Google Scholar]
  45. Bolin F.P., Preuss L.E., Taylor R.C., Ference R.J. (1989) Refractive index of some mammalian tissues using a fiber optic cladding method, Appl. Opt. 28, 2297–2303. https://doi.org/10.1364/AO.28.002297. [NASA ADS] [CrossRef] [Google Scholar]
  46. Gelman S., Warner D.S., Warner M.A. (2008) Venous function and central venous pressure: A physiologic story, Anesthesiology 108, 735–748. https://doi.org/10.1097/ALN.0b013e3181672607. [CrossRef] [Google Scholar]
  47. Ogneva I.V., Lebedev D.V., Shenkman B.S. (2010) Transversal stiffness and Young’s modulus of single fibers from rat soleus muscle probed by atomic force microscopy, Biophys. J. 98, 418–424. https://doi.org/10.1016/j.bpj.2009.10.028. [NASA ADS] [CrossRef] [Google Scholar]
  48. Camasão D.B., Mantovani D. (2021) The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review, Mater. Today Bio. 10, 100106. https://doi.org/10.1016/j.mtbio.2021.100106. [CrossRef] [Google Scholar]
  49. Troiani F., Nikolic K., Constandinou T.G. (2018) Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model, PLoS One 13, e0200392. https://doi.org/10.1371/journal.pone.0200392. [Google Scholar]
  50. Lin M., Chen Y., Deng W., Liang H., Yu S., Zhang Z., Liu C. (2022) Quantifying the elasticity properties of the median nerve during the upper limb neurodynamic test 1, Appl. Bionics. Biomech. 2022, 3300835. https://doi.org/10.1155/2022/3300835. [Google Scholar]
  51. Sicard D., Fredenburgh L.E., Tschumperlin D.J. (2017) Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions, J. Mech. Behav. Biomed. Mater. 74, 118–127. https://doi.org/10.1016/j.jmbbm.2017.05.039. [Google Scholar]
  52. Ryu S., Martino N., Kwok S.J.J., Bernstein L., Yun S.-H. (2021) Label-free histological imaging of tissues using Brillouin light scattering contrast, Biomed. Opt. Express 12, 1437–1448. https://doi.org/10.1364/BOE.414474. [Google Scholar]
  53. Timashev P.S., Kotova S.L., Belkova G.V., Gubar’kova E.V., Timofeeva L.B., Gladkova N.D., Solovieva A.B. (2016) Atomic force microscopy study of atherosclerosis progression in arterial walls, Microsc. Microanal. 22, 311–325. https://doi.org/10.1017/s1431927616000039. [CrossRef] [Google Scholar]
  54. Margueritat J., Virgone-Carlotta A., Monnier S., Delanoë-Ayari H., Mertani H.C., Berthelot A., Martinet Q., Dagany X., Rivière C., Rieu J.P., Dehoux T. (2019) High-frequency mechanical properties of tumors measured by Brillouin light scattering, Phys. Rev. Lett. 122, 018101. https://doi.org/10.1103/PhysRevLett.122.018101. [CrossRef] [Google Scholar]
  55. Landau L.D., Lifshitz E.M. (1987) in: Landau L.D., Lifshitz E.M. (eds), Fluid Mechanics, 2nd edn., Sound, Pergamon, pp. 263–324. [Google Scholar]
  56. Holmes M.J., Parker N.G., Povey M.J.W. (2011) Temperature dependence of bulk viscosity in water using acoustic spectroscopy, J. Phys.: Conf. Ser. 269, 012011. https://doi.org/10.1088/1742-6596/269/1/012011. [NASA ADS] [CrossRef] [Google Scholar]
  57. Antonacci G., Foreman M.R., Paterson C., Török P. (2013) Spectral broadening in Brillouin imaging, Appl. Phys. Lett. 103, 012011. https://doi.org/10.1063/1.4836477. [Google Scholar]
  58. Mattarelli M., Capponi G., Passeri A.A., Fioretto D., Caponi S. (2022) Disentanglement of multiple scattering contribution in Brillouin microscopy, ACS Photon. 9, 2087–2091. https://doi.org/10.1021/acsphotonics.2c00322. [Google Scholar]
  59. Ryu S., Martino N., Kwok S.J.J., Bernstein L., Yun S.H. (2021) Label-free histological imaging of tissues using Brillouin light scattering contrast, Biomed. Opt. Express 12, 1437–1448. https://doi.org/10.1364/boe.414474. [Google Scholar]
  60. Schlüßler R., Kim K., Nötzel M., Taubenberger A., Abuhattum S., Beck T., Müller P., Maharana S., Cojoc G., Girardo S., Hermann A. (2022) Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity, eLife 11, e68490. https://doi.org/10.7554/eLife.68490. [CrossRef] [Google Scholar]
  61. Chan C.J., Bevilacqua C., Prevedel R. (2021) Mechanical mapping of mammalian follicle development using Brillouin microscopy, Commun. Biol. 4, 1133. https://doi.org/10.1038/s42003-021-02662-5. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.