Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 29
Number of page(s) 7
DOI https://doi.org/10.1051/jeos/2023020
Published online 02 June 2023
  1. Baig M.M., GholamHosseini H., Connolly M.J. (2015) Mobile healthcare applications: system design review, critical issues and challenges, Australas Phys. Eng. Sci. Med. 38, 1, 23–38. https://doi.org/10.1007/s13246-014-0315-4. [CrossRef] [Google Scholar]
  2. Saranya P., Asha P. (2019) Survey on big data analytics in health care, in 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 46–51. [CrossRef] [Google Scholar]
  3. Uusitalo M.A., Rugeland P., Boldi M., Calvanese Strinati E., Carrozzo G., Demestichas P., Ericson M., Fettweis G., Hamon M.-H., Latva-aho M., Martrat J., Pärssinen A., Richerzhagen B., Sabella D., Schotten H.D., Serrano P., Stea G., Svensson T., Ustundag Soykan E., Wikström G., Ziegler V., Zou Y. (2021) Hexa-X, The European 6G flagship project”, EuCNC 2021, in 2021 Joint European Conference on Networks and Communications & 6G Summit (Eu-CNC/6G Summit), pp. 580–585. [CrossRef] [Google Scholar]
  4. Ellis A.D., Zhao J., Cotter D. (2009) Approaching the non-linear Shan non limit, J. Lightwave Technol. 28, 423–433. [Google Scholar]
  5. Ryf R., Randel S., Gnauck A.H., Bolle C., Sierra A., Mumtaz S., Esmaeelpour M., Burrows E.C., Essiambre R.-J., Winzer P.J., Peckham D.W., McCurdy A.H., Lingle R. (2012) Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing, J. Lightwave Technol. 30, 521–531. [NASA ADS] [CrossRef] [Google Scholar]
  6. Winzer P.J., Neilson D.T., Chraplyvy A.R. (2018) Fiber-optic transmission and networking: the previous 20 and the next 20 years, Opt. Express 26, 24190–24239. [NASA ADS] [CrossRef] [Google Scholar]
  7. Richardson D., Fini J., Nelson L (2013) Space Division Multiplexing in optical Fibres, Nature Photon. 7, 354–362. [NASA ADS] [CrossRef] [Google Scholar]
  8. Ferreira F.M., Barbosa F.A., Ruocco F.A., Lo M.C. (2022) Scaling up SDM transmission capacity, in 2022 IEEE Photonics Conference (IPC), pp. 1–2. [Google Scholar]
  9. Ferreira F.M., Fonseca D., da Silva H.J.A. (2013) Design of few-mode fibers with M-modes and low differential mode delay, J Lightwave Technol. 32, 353–360. [Google Scholar]
  10. Rademacher G., Puttnam B.J., Luís R.S. (2021) Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber, Nature Commun. 12, 4238. [NASA ADS] [CrossRef] [Google Scholar]
  11. Rademacher G., Puttnam B.J., Luís R.S., Eriksson T.A., Fontaine N.K., Mazur M., Chen H., Ryf R., Neilson D.T., Sillard P., Achten F., Awaji Y., Furukawa H. (2012) Degenerate mode-group division multiplexing, J. Lightwave Technol. 30, 3946–3952. [NASA ADS] [CrossRef] [Google Scholar]
  12. Leon-Saval S.G., Fontaine N.K., Salazar-Gil J.R., Ercan B., Ryf R., Bland-Hawthorn J. (2014) Mode-selective photonic lanterns for space-division multiplexing, Opt. Express 22, 1036–1044. [NASA ADS] [CrossRef] [Google Scholar]
  13. Labroille G., Denolle B., Jian P., Genevaux P., Treps N., Morizur J.-F. (2014) Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion, Opt. Express 22, 15599–15607. [NASA ADS] [CrossRef] [Google Scholar]
  14. Mounaix M., Fontaine N.K., Neilson D.T., Ryf R., Chen H., Alvarado-Zacarias J.C., Carpenter J. (2020) Time reversed optical waves by arbitrary vector spatiotemporal field generation, Nature Commun. 11, 1–7. [NASA ADS] [CrossRef] [Google Scholar]
  15. Czarske J.W., Haufe D., Koukourakis N., Büttner L. (2016) Transmission of independent signals through a multimode fiber using digital optical phase conjugation, Opt. Express 24, 15128–15136. [NASA ADS] [CrossRef] [Google Scholar]
  16. Rothe S., Koukourakis N., Radner H., Lonnstrom A., Jorswieck E., Czarske J.W. (2020) Physical layer security in multimode fiber optical networks, Sci. Rep. 10, 2740. https://doi.org/10.1038/s41598-020-59625-9. [NASA ADS] [CrossRef] [Google Scholar]
  17. Rothe S., Besser K.L., Krause D., Kuschmierz R., Koukourakis N., Jorswieck E., Czarske J.W. (2023) Securing data in multimode fibers by exploiting mode-dependent light propagation effects, Research 6, 0065. https://doi.org/10.34133/research.0065. [NASA ADS] [CrossRef] [Google Scholar]
  18. Fontaine N., Ryf R., Chen H., Neilson D., Carpenter J. (2017) Design of high order mode-multiplexers using multiplane light conversion, in 2017 European Conference on Optical Communication (ECOC), pp. 1–3. [Google Scholar]
  19. Fontaine N.K., Ryf R., Chen H., Neilson D.T., Kim K., Carpenter J. (2019) Laguerre-Gaussian mode sorter, Nature Commun. 10, 1–7. [NASA ADS] [CrossRef] [Google Scholar]
  20. Hashimoto T., Saida T., Ogawa I., Kohtoku M., Shibata T., Takahashi H. (2005) Optical circuit design based on a wavefront-matching method, Opt. Lett. 30, 2620–2622. [NASA ADS] [CrossRef] [Google Scholar]
  21. Fang J., Bu J., Li J., Lin C., Kong A., Yin X., Luo H., Song X., Xie Z., Lei T., Yuan X. (2021) Performance optimization of multiplane light conversion (MPLC) mode multiplexer by error tolerance analysis, Optics Exp. 29, 37852–37861. [NASA ADS] [CrossRef] [Google Scholar]
  22. Borhani N., Kakkava E., Moser C., Psaltis D. (2018) Learning to see through multimode fibers, Optica 5, 960–966. [NASA ADS] [CrossRef] [Google Scholar]
  23. Zhu C., Chan E.A., Wang Y., Peng W., Guo R., Zhang B., Soci C., Chong Y. (2021) Image reconstruction through a multimode fiber with a simple neural network architecture, Scientific Rep. 11, 1–10. [NASA ADS] [CrossRef] [Google Scholar]
  24. Pohle D., Rothe S., Koukourakis N., Czarske J. (2022) Surveillance of few-mode fiber-communication channels with a single hidden layer neural network, Opt. Lett. 47, 5, 1275–1278. [NASA ADS] [CrossRef] [Google Scholar]
  25. Sun J., Wu J., Koukourakis N., Cao L., Kuschmierz R., Czarske J. (2022) Real-time complex light field generation through a multi-core fiber with deep learning, Scientific Rep. 12, 1–10. [NASA ADS] [CrossRef] [Google Scholar]
  26. Teğin U., Rahmani B., Kakkava E., Borhani N., Moser C., Psaltis D. (2020) Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks, APL Photonics 5, 030804. https://doi.org/10.1063/1.5138131. [CrossRef] [Google Scholar]
  27. Lin X., Rivenson Y., Yardimci N.T., Veli M., Luo Y., Jarrahi M., Ozcan A. (2018) All-optical machine learning using diffractive deep neural networks, Science 361, 1004–1008. [NASA ADS] [CrossRef] [Google Scholar]
  28. Rahmani B., Loterie D., Kakkava E., Borhani N., Teğin U., Psaltis D., Moser C. (2020) Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media, Nat. Mach. Intell. 2, 403–410. [CrossRef] [Google Scholar]
  29. Cohen G., Afshar S., Tapson J., van Schaik A. (2017) EMNIST: Extending MNIST to handwritten letters, in 2017 International Joint Conference On Neural Networks (IJCNN), pp. 2921–2926. [CrossRef] [Google Scholar]
  30. Matsushima K., Shimobaba T. (2009) Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields, Optics Exp. 17, 19662–19673. [NASA ADS] [CrossRef] [Google Scholar]
  31. Rothe S., Zhang Q., Koukourakis N., Czarske J. (2021) Intensity-only mode decomposition on multimode fibers using a densely connected convolutional network, J. Lightwave Technol. 39, 1672–1679. [NASA ADS] [CrossRef] [Google Scholar]
  32. Zhang Q., Rothe S., Koukourakis N., Czarske J. (2022) Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission, APL Photon. 7, 066104. https://doi.org/10.1063/5.0088605. [CrossRef] [Google Scholar]
  33. Luo Y., Yan S., Li H.A., Lai P., Zheng Y. (2020) Focusing light through scattering media by reinforced hybrid algorithms, APL Photon. 5, 016109, https://doi.org/10.1063/1.5131181. [CrossRef] [Google Scholar]
  34. Schmidt K., Koukourakis N., Czarske J.W. (2022) Assignment of focus position with convolutional neural networks in adaptive lens based axial scanning for confocal microscopy, Appl. Sci. 12, 661. https://doi.org/10.3390/app12020661. [Google Scholar]
  35. Cuche E., Bevilacqua F., Depeursinge C. (1999) Digital holography for quantitative phase-contrast imaging, Optics Lett. 24, 291–293. [NASA ADS] [CrossRef] [Google Scholar]
  36. Barrachina J.A. (2022) NEGU93/cvnn: Complex-Valued Neural Networks version v2.0. Nov. 2022. [Google Scholar]
  37. Loterie D., Farahi S., Papadopoulos I., Goy A., Psaltis D., Moser C. (2015) Digital confocal microscopy through a multimode fiber, Optics Express 23, 23845–23858. [NASA ADS] [CrossRef] [Google Scholar]
  38. Koukourakis N., Wagner F., Rothe S., Karl M.O., Czarske J.W. (2022) Investigation of human organoid retina with digital holographic transmission matrix measurements, Light Adv. Manuf. 3, 211–225. [Google Scholar]
  39. Pohle D., Barbosa F.A., Ferreira F.M., Czarske J., Rothe S. (September 2022) Intelligent self calibration tool for adaptive mode multiplexers using multiplane light conversion, in General Congress ICO-25-OWLS-16, Dresden, Germany, September 2022. https://ico25.org/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.