Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 7
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-020-00129-4
Published online 08 April 2020
  1. Mekis, A., et al.: A CMOS Photonics Platform for High-Speed Optical Interconnects, IEEE Photonics Conference 2012, pp. 356–357. Burlingame, CA (2012) [Google Scholar]
  2. Zimmermann, L., et al.: BiCMOS Silicon Photonics Platform, In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4E.5 [Google Scholar]
  3. Yamada, K., et al.: In Guided Light in Silicon-Based Materials. In: Vivien, L., Pavesi, L. (eds). Handbook of Silicon Photonics Series in Optics and Optoelectronics, p. 55. CRC Press (2013) [Google Scholar]
  4. Wang J, Yao Z, Lei T, Poon AW, Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions. Sci Rep (2014) 4, 7528. https://doi.org/10.1038/srep07528 [NASA ADS] [CrossRef] [Google Scholar]
  5. Kim H, Yu M, Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express (2016) 24, 9501–9510. https://doi.org/10.1364/OE.24.009501 [NASA ADS] [CrossRef] [Google Scholar]
  6. Juan-Colás, J., Fraser Krauss, T., Johnson, S.: Real-Time Analysis of Molecular Conformation Using Silicon Electrophotonic Biosensors. ACS Photonics. 4, (2017). https://doi.org/10.1021/acsphotonics.7b00580 [Google Scholar]
  7. Green WMJ, et al.Silicon Photonic Gas Sensing (2019) San Diego2019 Optical Fiber communications conference and exhibition (OFC)1–3. [Google Scholar]
  8. Brasch V, Lucas E, Jost JD, Geiselmann M, Kippenberg T, Self-referenced photonic chip soliton Kerr frequency comb. Light Sci Appl (2016) 6, e16202. https://doi.org/10.1038/lsa.2016.202 [NASA ADS] [CrossRef] [Google Scholar]
  9. Salem R, Foster MA, Turner AC, Geraghty DF, Lipson M, Gaeta A, Signal regeneration using low-power four-wave mixing on silicon chip. Nat Photonics (2007) 2, 35–38. https://doi.org/10.1038/nphoton.2007.249 [Google Scholar]
  10. Signorini S, et al.Intermodal four-wave mixing in silicon waveguides. Photon Res (2018) 6, 805–814. https://doi.org/10.1364/PRJ.6.000805 [CrossRef] [Google Scholar]
  11. Pintus, P., Huang, D., Morton, P., Shoji, Y., Mizumoto, T., Bowers, J.E.: Integrated Optical Isolator and Circulator in Silicon Photonics, 2018 European conference on optical communication (ECOC), pp. 1–3. Rome (2018) [Google Scholar]
  12. Larrea-Luzuriaga RA, Gutiérrez AM, Sanchis P, Analytical strategy to achieve optimized grating couplers with high precision for both TE and TM polarizations on SOI platform. 2016 IEEE Ecuador Technical Chapters Meeting (ETCM) (2016) 01, 1–5. [Google Scholar]
  13. Dai D, Zhang M, Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls. Opt Express (2015) 23, 32452–32464. https://doi.org/10.1364/OE.23.032452 [NASA ADS] [CrossRef] [Google Scholar]
  14. Wang Y, et al.Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt Express (2014) 22, 20652–20662. https://doi.org/10.1364/OE.22.020652 [CrossRef] [Google Scholar]
  15. Wang Y, et al.Apodized Focusing Fully Etched Subwavelength Grating Couplers. in IEEE Photonics J (2015) 7, 31–10. Art no. 2400110 [Google Scholar]
  16. Zou J, Zhang Y, Hu J, Wang C, Zhang M, Le Z, Grating coupler with reduced Back reflection using λ/4 offset at its grating sub-teeth. J. Lightwave Technol. (2019) 37, 1195–1199. https://doi.org/10.1109/JLT.2018.2889863 [NASA ADS] [CrossRef] [Google Scholar]
  17. Hoffmann, J., Schulz, M.K., Pitruzzello, G., Fohrmann, L., Petrov, A., Eich, M.: Backscattering design for a focusing grating coupler with fully etched slots for transverse magnetic modes. Sci Rep. 8, (2018). https://doi.org/10.1038/s41598-018-36082-z [Google Scholar]
  18. Knoll D, et al.BiCMOS Silicon Photonics Platform for Fabrication of High-Bandwidth Electronic-Photonic Integrated Circuits (2016) Austin2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)46–49. [Google Scholar]
  19. Gajda A, Zimmermann L, Bruns J, Tillack B, Petermann K, Design rules for p-i-n diode carriers sweeping in nano-rib waveguides on SOI. Opt Express (2011) 19, 9915–9922. https://doi.org/10.1364/OE.19.009915 [CrossRef] [Google Scholar]
  20. J. Fujikata, T. Nakamura, M. Noguchi and S. Takahashi, "High-Efficiency of Narrow-Width MOS Capacitor Type Si Optical Modulator with TM Mode Excitation," 2019 IEEE 16th international conference on group IV photonics (GFP), Singapore, 2019, pp. 1–2 [Google Scholar]
  21. Banakar M, et al.High Speed Silicon Capacitor Modulators for TM Polarisation (2019) SingaporeIEEE 16th international conference on group IV photonics (GFP)1–2. [Google Scholar]
  22. Georgieva, G., Voigt, K., Zimmermann, L.: Focusing 1D Silicon Photonic Grating Coupler in Photonic BiCMOS Technology for the Excitation of the Fundamental TM Mode. In: 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), pp. 1667-1673. Rome (2019) [Google Scholar]
  23. Taillaert, D.: Grating couplers as interface between optical fibres and nanophotonic waveguides. PhD thesis, Ghent University, Ghent (2004) [Google Scholar]
  24. Chen X, Tsang HK, Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers. in IEEE Photonics J (2009) 1, 3184–190. https://doi.org/10.1109/JPHOT.2009.2031685 [CrossRef] [Google Scholar]
  25. Booker HG, Clemmow PC, The concept of an angular spectrum of plane waves, and its relation to that of polar diagram and aperture distribution. in Proceedings of the IEE - Part III: Radio and Commun Eng (1950) 97, 4511–17. [CrossRef] [Google Scholar]
  26. Ura S, et al.Focusing grating couplers for polarization detection. J. Lightwave Technol. (1988) 6, 61028–1033. https://doi.org/10.1109/50.4095 [CrossRef] [Google Scholar]
  27. Gedney SD, an Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media. Electromagnetics (1996) 16, 4399–415. https://doi.org/10.1080/02726349608908487 [CrossRef] [Google Scholar]
  28. Weiland T, A discretization method for the solution of Maxwell's equations for six-component fields. Archiv Elektronik und Uebertragungstechnik (1977) 31, 116–120. [NASA ADS] [Google Scholar]
  29. Ogusu K, Tanaka I, Optical strip waveguide: an experiment. Appl Opt. (1980) 19, 3322–3325. https://doi.org/10.1364/AO.19.003322 [NASA ADS] [CrossRef] [Google Scholar]
  30. Oliner AA, Peng S, Hsu T, Sanchez A, Guidance and leakage properties of a class of open dielectric waveguides: part II - new physical effects. IEEE Trans Microw Theory Tech (1981) 29, 9855–869. https://doi.org/10.1109/TMTT.1981.1130466 [NASA ADS] [CrossRef] [Google Scholar]
  31. Webster MA, Pafchek RM, Mitchell A, Koch TL, Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides. in IEEE Photonics Technol Lett (2007) 19, 6429–431. https://doi.org/10.1109/LPT.2007.891979 [NASA ADS] [CrossRef] [Google Scholar]
  32. Tian, H., et al.: Fabrication of low-loss SOI nano-waveguides including BEOL processes for nonlinear applications. J Eur Optical Soc. 7, (2012), 12032-1–12032-6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.