Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1186/s41476-020-00128-5 | |
Published online | 09 April 2020 |
- Long D, Early history of the Raman effect. Int. Rev. Phys. Chem. (1988) 7, 4317–349. https://doi.org/10.1080/01442358809353216 [NASA ADS] [CrossRef] [Google Scholar]
- Banwell C, Banwell C, Raman spectroscopy. Fundamentals of Molecular Spectroscopy (1972) New YorkMcGraw-Hill124–154. [Google Scholar]
- Long D, The Raman Effect: a Unified Treatment of the Theory of Raman Scattering by Molecules (2002) New JerseyWileyhttps://doi.org/10.1002/0470845767 [Google Scholar]
- Shipp D, Sinjab F, Notingher I, Raman spectroscopy: techniques and applications in the life sciences. Adv. Opt. Photonics (2017) 9, 2315–428. https://doi.org/10.1364/AOP.9.000315 [CrossRef] [Google Scholar]
- Das R, Agrawal Y, Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. (2011) 57, 163–176. https://doi.org/10.1016/j.vibspec.2011.08.003 [CrossRef] [Google Scholar]
- Vandenabeele P, Tate J, Moens L, Non-destructive analysis of museum objects by fiber-optic Raman spectroscopy. Anal. Bioanal. Chem. (2007) 387, 3813–819. https://doi.org/10.1007/s00216-006-0758-x [CrossRef] [Google Scholar]
- Meksiarun P, Andriana B, Matsuyoshi H, Sato H, Non-invasive quantitative analysis of specific fat accumulation in subcutaneous adipose tissues using Raman spectroscopy. Sci. Rep. (2016) 6, 37068. https://doi.org/10.1038/srep37068 [NASA ADS] [CrossRef] [Google Scholar]
- Haynes C, McFarland A, Van Duyne R, Surface-enhanced Raman spectroscopy. Anal. Chem. (2005) 77, 17338A–346A. https://doi.org/10.1021/ac053456d [Google Scholar]
- Schlücker S, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. (2014) 53, 4756–4795. https://doi.org/10.1002/anie.201205748 [CrossRef] [Google Scholar]
- Sharma B, Frontiera R, Henry A, Ringe E, Van Duyne R, SERS: materials, applications, and the future. Mater. Today (2012) 15, 1–216–25. https://doi.org/10.1016/S1369-7021(12)70017-2 [CrossRef] [Google Scholar]
- Ding S, You E, Tian Z, Moskovits M, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. (2017) 46, 4042–4076. https://doi.org/10.1039/C7CS00238F [CrossRef] [Google Scholar]
- Chulhai D, Hu Z, Moore J, Chen X, Jensen L, Theory of linear and nonlinear surface-enhanced vibrational spectroscopies. Annu. Rev. Phys. Chem. (2016) 67, 541–564. https://doi.org/10.1146/annurev-physchem-040215-112347 [NASA ADS] [CrossRef] [Google Scholar]
- Henry A, Sharma B, Cardinal M, Kurouski D, Van Duyne R, Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal. Chem. (2016) 88, 6638–6647. https://doi.org/10.1021/acs.analchem.6b01597 [CrossRef] [Google Scholar]
- Tripp R, Dluhy R, Zhao Y, Novel nanostructures for SERS biosensing. Nano Today (2008) 3, 3–431–37. https://doi.org/10.1016/S1748-0132(08)70042-2 [Google Scholar]
- Bantz K, Meyer A, Wittenberg N, Im H, Kurtulus Ö, Lee S, Lindquist N, Oh SH, Haynes C, Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. (2011) 13, 11551–11567. https://doi.org/10.1039/c0cp01841d [NASA ADS] [CrossRef] [Google Scholar]
- Ru E, Etchegoin P, Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. (2012) 63, 65–87. https://doi.org/10.1146/annurev-physchem-032511-143757 [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y, Irudayaraj J, Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Phil. Trans. R Soc. B (2013) 368, 20120026. https://doi.org/10.1098/rstb.2012.0026 [CrossRef] [Google Scholar]
- Lee H, Jin S, Kim H, Suh Y, Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status. Phys. Chem. Chem. Phys. (2013) 15, 5276–5287. https://doi.org/10.1039/c3cp44463e [NASA ADS] [CrossRef] [Google Scholar]
- Zrimsek A, Chiang N, Mattei M, Zaleski S, McAnally M, Chapman C, Henry AI, Schatz G, Van Duyne R, Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. (2017) 117, 7583–7613. https://doi.org/10.1021/acs.chemrev.6b00552 [CrossRef] [Google Scholar]
- Eesley G, Coherent Raman Spectroscopy (1981) OxfordPergamon Press [Google Scholar]
- Cheng JX, Xie XS, Coherent Raman Scattering Microscopy (2013) Boca RatonCRC Press [Google Scholar]
- Evans CL, Xie XS, Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. (2008) 1, 883–909. https://doi.org/10.1146/annurev.anchem.1.031207.112754 [NASA ADS] [CrossRef] [Google Scholar]
- Cheng JX, Xie XS, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B (2004) 108, 3827–840. https://doi.org/10.1021/jp035693v [NASA ADS] [CrossRef] [Google Scholar]
- Volkmer A, Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J. Phys. D. Appl. Phys. (2005) 38, R59–R81. https://doi.org/10.1088/0022-3727/38/5/R01 [Google Scholar]
- Krafft C, Dietzek B, Schmitt M, Popp J, Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J. Biomed. Opt. (2012) 17, 40408011–04080115. https://doi.org/10.1117/1.JBO.17.4.040801 [NASA ADS] [CrossRef] [Google Scholar]
- Volkmer A, Matousek P, Morris M, Coherent Raman scattering microscopy. Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (2010) BerlinSpringer – Verlag111–152. https://doi.org/10.1007/978-3-642-02649-2_6 [CrossRef] [Google Scholar]
- Xie XS, Cheng J, Potma E, Pawley JB, Coherent anti-Stokes Raman scattering microscopy. Handbook of Biological Confocal Microscopy (2006) BostonSpringer – Verlag US595–606. https://doi.org/10.1007/978-0-387-45524-2_33 [CrossRef] [Google Scholar]
- Zhang Y, Zhen Y, Neumann O, Day J, Nordlander P, Halas N, Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. (2014) 5, 4424. https://doi.org/10.1038/ncomms5424 [NASA ADS] [CrossRef] [Google Scholar]
- Zhou Q, Zhu J, Yuan J, Fang X, Numerical simulation of surface-enhanced coherent anti-Stokes Raman scattering on gold nanoparticle substrate. J. Nanosci. Nanotechnol. (2017) 17, 32152–2156. https://doi.org/10.1166/jnn.2017.13007 [CrossRef] [Google Scholar]
- He J, Fan C, Ding P, Zhu S, Liang E, Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements. Sci. Rep. (2016) 6, 20777. https://doi.org/10.1038/srep20777 [Google Scholar]
- Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N, Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano (2011) 5, 32042–2050. https://doi.org/10.1021/nn103172t [CrossRef] [Google Scholar]
- Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos P, Liu N, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. (2010) 10, 72721–2726. https://doi.org/10.1021/nl101938p [NASA ADS] [CrossRef] [Google Scholar]
- Zhang Y, Wen F, Zhen YR, Nordlander P, Halas N, Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. U. S. A. (2013) 110, 239215–9219. https://doi.org/10.1073/pnas.1220304110 [Google Scholar]
- Fan J, Bao K, Wu C, Bao J, Bardhan R, Halas N, Manoharan V, Shvets G, Nordlander P, Capasso F, Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. (2010) 10, 114680–4685. https://doi.org/10.1021/nl1029732 [NASA ADS] [CrossRef] [Google Scholar]
- Gallinet B, Martin O, Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano (2011) 5, 118999–9008. https://doi.org/10.1021/nn203173r [CrossRef] [Google Scholar]
- Lassiter B, Sobhani H, Knight M, Mielczarek W, Nordlander P, Halas N, Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett. (2012) 12, 1058–1062. https://doi.org/10.1021/nl204303d [CrossRef] [Google Scholar]
- Lassiter B, Sobhani H, Fan J, Kundu J, Capasso F, Nordlander P, Halas N, Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability. Nano Lett. (2010) 10, 83184–3189. https://doi.org/10.1021/nl102108u [NASA ADS] [CrossRef] [Google Scholar]
- Joe Y, Satanin A, Kim C, Classical analogy of Fano resonances. Phys. Scr. (2006) 74, 259–266. https://doi.org/10.1088/0031-8949/74/2/020 [CrossRef] [Google Scholar]
- Lovera A, Gallinet B, Nordlander P, Martin O, Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano (2013) 7, 54527–4536. https://doi.org/10.1021/nn401175j [CrossRef] [Google Scholar]
- Rahmani M, Tahmasebi T, Lin Y, Lukiyanchuk B, Liew T, Hong M, Influence of plasmon destructive interferences on optical properties of gold planar quadrumers. Nanotechnology (2011) 22, 245204. https://doi.org/10.1088/0957-4484/22/24/245204 [Google Scholar]
- Rahmani M, Lei D, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T, Hong M, Maier S, Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett. (2012) 12, 42101–2106. https://doi.org/10.1021/nl3003683 [NASA ADS] [CrossRef] [Google Scholar]
- Attaran A, Emami S, Soltanian M, Penny R, Behbahani F, Harun S, Ahmad H, Abdul-Rashid H, Moghavvemi M, Circuit model of Fano resonance on tetramers, pentamers and broken symmetry pentamers. Plasmonics (2014) 9, 1303–1313. https://doi.org/10.1007/s11468-014-9743-y [Google Scholar]
- Gallinet B, Martin O, Ab-initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B (2011) 83, 2354271–2354276. https://doi.org/10.1103/PhysRevB.83.235427 [NASA ADS] [CrossRef] [Google Scholar]
- Hashimoto K, Omachi J, Ideguchi T, Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses. Opt. Express (2018) 26, 14307–14314. https://doi.org/10.1364/OE.26.014307 [CrossRef] [Google Scholar]
- Ye J, Wen F, Sobhani H, Lassiter J, Dorpe P, Nordlander P, Halas N, Plasmonic nanoclusters: near-field properties of the Fano resonance interrogated with SERS. Nano Lett. (2012) 12, 31660–1667. https://doi.org/10.1021/nl3000453 [NASA ADS] [CrossRef] [Google Scholar]
- Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli A, Liew T, Hong M, Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt. Express (2011) 19, 64949–4956. https://doi.org/10.1364/OE.19.004949 [NASA ADS] [CrossRef] [Google Scholar]
- Rahmani M, Lukiyanchuk B, Nguyen T, Tahmasebi T, Lin Y, Liew T, Hong M, Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization. Opt. Mater. Express (2011) 1, 81409–1415. https://doi.org/10.1364/OME.1.001409 [NASA ADS] [CrossRef] [Google Scholar]
- COMSOL Multiphysics v. 5.4. ApplicationScatterer on Substrate (2019) StockholmCOMSOL ABhttps://www.comsol.fi/model/download/563151/models.woptics.scatterer_on_substrate.pdf. Accessed 1 Dec 2019 [Google Scholar]
- Johnson P, Christy R, Optical constants of the noble metals. Phys. Rev. B (1972) 6, 4370–4379. https://doi.org/10.1103/PhysRevB.6.4370 [CrossRef] [Google Scholar]
- Miroshnichenko A, Flach S, Kivshar Y, Fano resonances in nanoscale structures. Rev. Mod. Phys. (2010) 82, 2257–2298. https://doi.org/10.1103/RevModPhys.82.2257 [CrossRef] [Google Scholar]
- Dutta A, Alam K, Nuutinen T, Hulkko E, Karvinen P, Kuittinen M, Toppari JJ, Vartiainen E, Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers. Opt. Express (2019) 27, 2130031–30043. https://doi.org/10.1364/OE.27.030031 [CrossRef] [Google Scholar]
- Gallinet B, Martin O, Relation between near–field and far–field properties of plasmonic Fano resonances. Opt. Express (2011) 19, 2222167–22175. https://doi.org/10.1364/OE.19.022167 [NASA ADS] [CrossRef] [Google Scholar]
- Rahmani M, Lukiyanchuk B, Tahmasebi T, Lin Y, Liew T, Hong M, Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers. Appl. Phys. A Mater. Sci. Process. (2012) 107, 23–30. https://doi.org/10.1007/s00339-011-6732-2 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.