Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 6
Number of page(s) 8
Published online 10 March 2020
  1. Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L, Georgas MS, Waterman AS, Shainline JM, Avizienis RR, Lin S, Moss BR, Kumar R, Pavanello F, Atabaki AH, Cook HM, Ou AJ, Leu JC, Chen Y-H, Asanović K, Ram RJ, Popović MA, Stojanović VM, Single-chip microprocessor that communicates directly using light. Nat (2015) 528, 7583534–538. [Google Scholar]
  2. Shacham A, Bergman K, Carloni LP, Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. (2008) 57, 91246–1260. [CrossRef] [Google Scholar]
  3. Fang Q., Song J. F., Tao S. H., Yu M. B., Lo G. Q., Kwong D. L., Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler. Optics Express (2008) 16, 96425. [NASA ADS] [CrossRef] [Google Scholar]
  4. Mortada, B., Khalil, D., Omran, H., Medhat, M., Saadany, B.: Fully Integrated Mach-Zhender MEMS Interferometer With Two Complementary Outputs. Artic IEEE J Quantum Electron. 48(2), 244–251 (2012) [Google Scholar]
  5. Kintaka K, Kita Y, Shimizu K, Matsuoka H, Ura S, Nishii J, Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture. Opt. Lett. (2010) 35, 121989–1991. [CrossRef] [Google Scholar]
  6. Liu A, Hak D, Rong H, Paniccia M, Cohen O, Jones R, Optical Amplification and Lasing by Stimulated Raman Scattering in Silicon Waveguides. J Light Technol (2006) 24, 31440. [NASA ADS] [CrossRef] [Google Scholar]
  7. Shen B, Wang P, Polson R, Menon R, An integrated-nanophotonics polarization beamsplitter with 2.4×2.4μm2 footprint. Nat. Photonics (2015) 9, 6378–382. [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang J, Lee S, Ge-photodetectors for Si-based optoelectronic integration. Sensors (2011) 11, 1696–718. [NASA ADS] [CrossRef] [Google Scholar]
  9. Terracciano M, De Stefano L, Borbone N, Politi J, Oliviero G, Nici F, Casalino M, Piccialli G, Dardano P, Varra M, Rea I, Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Adv. (2016) 6, 9086762–86769. [Google Scholar]
  10. Rowe LK, Elsey M, Tarr NG, Knights AP, Post E, CMOS-compatible optical rib waveguides defined by local oxidation of silicon. Electron. Lett. (2007) 43, 7392–393. [NASA ADS] [CrossRef] [Google Scholar]
  11. Vivien, Pascal, Lardenois, Marris-Morini, Cassan, Grillot, Laval, Fedeli, Loubna El Melhaoui, Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology (2006) 24, 103810–3815. [Google Scholar]
  12. Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M, 125 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express (2007) 15, 2430. [CrossRef] [Google Scholar]
  13. Michael CP, Borselli M, Johnson TJ, Chrystal C, Painter O, An optical fiber-taper probe for wafer-scale microphotonic device characterization. Opt. Express (2007) 15, 84745. [CrossRef] [Google Scholar]
  14. Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M, High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express (2007) 15, 2660. [CrossRef] [Google Scholar]
  15. Tsybeskov L, Lockwood DJ, Ichikawa M, Silicon Photonics, "Silicon photonics: CMOS going optical". Proc. IEEE (2009) 97, 71161–1165. [CrossRef] [Google Scholar]
  16. Eng PC, Song S, Ping B, State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics (2015) 4, 1277–302. [Google Scholar]
  17. Michel J, Liu J, Kimerling LC, High-performance Ge-on-Si photodetectors. Nat. Photonics (2010) 4, 8527–534. [NASA ADS] [CrossRef] [Google Scholar]
  18. Alduino, A.: Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers. Paper presented at IEEE Hot Chips 22 Symposium (HCS 2010), Stanford (2010) [Google Scholar]
  19. Narasimha A, Analui B, Balmater E, Clark A, Gal T, Guckenberger D, Gutierrez S, Harrison M, Ingram R, Koumans R, Kucharski D, Leap K, Liang Y, Mekis A, Mirsaidi S, Peterson M, Pham T, Pinguet T, Rines D, Sadagopan V, Sleboda TJ, Song D, Wang Y, Welch B, Witzens J, Abdalla S, Gloeckner S, De Dobbelaere P, A 40-Gb/s QSFP optoelectronic transceiver in a 0.13μm CMOS silicon-on-insulator technology. OFC/NFOEC 2008–2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (2008) [Google Scholar]
  20. Alloatti L., Srinivasan S. A., Orcutt J. S., Ram R. J., Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor. Applied Physics Letters (2015) 107, 4041104. [NASA ADS] [CrossRef] [Google Scholar]
  21. Meng H, Atabaki A, Orcutt JS, Ram RJ, Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength. Opt. Express (2015) 23, 2532643–32653. [NASA ADS] [CrossRef] [Google Scholar]
  22. McDonald Steven A., Konstantatos Gerasimos, Zhang Shiguo, Cyr Paul W., Klem Ethan J. D., Levina Larissa, Sargent Edward H., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials (2005) 4, 2138–142. [NASA ADS] [CrossRef] [Google Scholar]
  23. Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras JJ, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F, Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics (2017) 11, 6366–371. [NASA ADS] [CrossRef] [Google Scholar]
  24. Casalino M, Coppola G, De La Rue RM, Logan DF, State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev. (2016) 10, 6895–921. [CrossRef] [Google Scholar]
  25. Zhu Shiyang, Yu M. B., Lo G. Q., Kwong D. L., Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Applied Physics Letters (2008) 92, 8081103. [NASA ADS] [CrossRef] [Google Scholar]
  26. Casalino M., Iodice M., Sirleto L., Rao S., Rendina I., Coppola G., Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm. Journal of Applied Physics (2013) 114, 15153103. [NASA ADS] [CrossRef] [Google Scholar]
  27. Berini P, Surface plasmon photodetectors and their applications. Laser Photonics Rev. (2014) 8, 2197–220. [NASA ADS] [CrossRef] [Google Scholar]
  28. Casalino M., Sirleto L., Moretti L., Gioffrè M., Coppola G., Rendina Ivo, Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55μm: Fabrication and characterization. Applied Physics Letters (2008) 92, 25251104. [NASA ADS] [CrossRef] [Google Scholar]
  29. Casalino, M., Russo, R., Russo, C., Ciajolo, A., Di Gennaro, E., Iodice, M., Coppola, G.: Free-Space Graphene/Silicon Photodetectors Operating at 2 Micron 5, 4577–4585 (2018) [Google Scholar]
  30. Casalino M, Design of Resonant Cavity-Enhanced Schottky Graphene/Silicon Photodetectors at 1550 nm. J. Light. Technol (2018) 36, 91766–1774. [NASA ADS] [CrossRef] [Google Scholar]
  31. Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari AC, On-Chip integrated, silicon-Graphene Plasmonic Schottky Photodetector with high Responsivity and avalanche Photogain. Nano Lett. (2016) 16, 53005–3013. [NASA ADS] [CrossRef] [Google Scholar]
  32. Castagna, M.E., Coffa, S., Caristia, L., Messina, A., Bongiorno, C.: Quantum dot materials and devices for light emission in silicon. Paper presented at 32nd European Solid-State Device Research Conference, Firenze (2002) [Google Scholar]
  33. Jang M, Kim Y, Shin J, Lee S, Formation of erbium-silicide as source and drain for decananometer-scale Schottky barrier metal-oxide-semiconductor field-effect transistors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology (2004) 51–55. SPEC. ISS [CrossRef] [Google Scholar]
  34. Gioffré Mariano, Coppola Giuseppe, Iodice Mario, Casalino Maurizio, Integrable Near-Infrared Photodetectors Based on Hybrid Erbium/Silicon Junctions. Sensors (2018) 18, 113755. [Google Scholar]
  35. Fowler RH, The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. (1931) 38, 145–56. [CrossRef] [Google Scholar]
  36. Co J, Vilms SJ, Archer RJ, Investigation of semiconductor schottky barriers for optical detection and cathodic emission 00 final report /| nfeb25m (1967) [Google Scholar]
  37. Elabd WFKH, Theory and Measurements of Photoresponse for Thin PdzSi and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity (1982) [Google Scholar]
  38. Scales C, Berini P, Thin-film schottky barrier photodetector models. IEEE J. Quantum Electron. (2010) 46, 5633–643. [CrossRef] [Google Scholar]
  39. Vickers VE, Model of Schottky Barrier Hot-Electron-Mode Photodetection. Appl. Optics (1971) 10, 92190. [NASA ADS] [CrossRef] [Google Scholar]
  40. Casalino Maurizio, Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors. IEEE Journal of Quantum Electronics (2016) 52, 41–10. [CrossRef] [Google Scholar]
  41. Reed GT, Knights AP, Silicon Photonics: an Introduction (2004) ChichesterWiley [CrossRef] [Google Scholar]
  42. Kasap, S.O.: Optoelectronics and Photonics: Principles and Practices. Prentice Hall Englewood Cliffs, New Jersey (2001) [Google Scholar]
  43. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons, Inc., New Jersey (2006) [Google Scholar]
  44. Lien CD, So FCT, Nicolet MA, An improved forward I-V method for nonideal Schottky diodes with high series resistance. IEEE Trans. Electron Devices (1984) 31, 101502–1503. [NASA ADS] [CrossRef] [Google Scholar]
  45. Llopis O, Azaizia S, Saleh K, Slimane AA, Fernandez A, Photodiode 1/f Noise and Other Types of less Known Baseband Noises in Optical Telecommunications Devices. IEEE 22nd International Conference on Noise and Fluctuations, ICNF 2013 (2013) [Google Scholar]
  46. Barrios CA, Rosa de Almeida V, Lipson M, Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator. IEEE J. Lightwave Technol. (2003) 21, 1089–1098. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.