Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13073 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2013.13073 | |
Published online | 29 October 2013 |
- F. S. Wouters, P. J. Verveer, and P. I. H. Bastaiens, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001). [CrossRef] [Google Scholar]
- M. Peter, and S. M. Ameer-Beg, “Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004). [CrossRef] [Google Scholar]
- M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive Optics for Biomedical Microscopy,” Opt. Photon. News 23, 22–29 (2012). [CrossRef] [Google Scholar]
- X. Tao, B. Fernandez, O. Azucena, M. Fu, D. C. Garcia, Y. Zuo, D. Chen, et al., “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef] [Google Scholar]
- J. B. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006). [CrossRef] [Google Scholar]
- M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. Soc. A 365 , 2829–2843 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, Oxford, 1998). [Google Scholar]
- M. Shaw, K. O’Holleran, and C. Paterson, “Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express 21, 19353–19362 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- G. Cao, and Xin Yu, “Accuracy analysis of a Hartmann-Shack wave-front sensor operated with a faint object,” Opt. Eng. 33, 2331–2335 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- A. Vyas, M. B. Roopashree, and B. R. Prasad, “Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor” in Topics in Adaptive Optics, R. K. Tyson, ed., 167–196 (InTech, Rijeka, 2012). [Google Scholar]
- M. J. Booth, “Wavefront sensor less adaptive optics for large aberrations,” Opt. Express 32, 5–7 (2007). [NASA ADS] [Google Scholar]
- O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- L. Sherman, J. Y. Ye, O. Albert and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002). [CrossRef] [Google Scholar]
- P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- A. C. F. Gonte and R. Dandliker, “Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror,” Opt. Eng. 41, 1073–1076 (2002). [CrossRef] [Google Scholar]
- A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multi-photon microscopy,” Microsc. Res. Technol. 67, 36–44 (2005). [CrossRef] [Google Scholar]
- M. J. Booth, “Wavefront sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006). [CrossRef] [Google Scholar]
- M. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- M. J. Booth, M. A. A. Neil, R. Juskaitis and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Nat. Acad. Sci. 99, 5788–5792 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- D. Debarre, M. J. Booth and T. Wilson, “Image-based adaptive optics for imaging and microscopy,” Proc. SPIE 6888, 68880A (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Shaw, K. O’Holleran, K. Ryan, and C. Paterson, “Adaptive optics fluorescence microscopy of C. elegans,” http://www.npl.co.uk/upload/pdf/adaptive-optics-fluorescence-microscopy-of-c-elegans.pdf [Google Scholar]
- J. Garcia-Marquez, J. E. A. Landgrave, N. Alcala-Ochoa, and C. Perez-Santos, “Recursive wavefront aberration correction method for LCoS spatial light modulators,” Opt. Laser Eng. 49, 743–748 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- J. M. Bueno, B. Vohnsen, L. Roso, and P. Artal, “Temporal wave-front stability of an ultrafast high-power laser beam,” Appl. Optics 48, 770–777 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. Schwiegerling, “Scaling pseudo-Zernike expansion coefficients to different pupil sizes,” Opt. Lett. 36, 3076–3078 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- J. Schwiegerling, “Description of Zernike Polynomials” www.visualopticslab.com/OPTI515L/Background/Zernike%20Notes%2017Feb2011.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.