Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13072
Number of page(s) 12
DOI https://doi.org/10.2971/jeos.2013.13072
Published online 29 October 2013
  1. J. E. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Stat. Soc. Ser. B Met. 36, 192–236 (1974). [CrossRef] [Google Scholar]
  2. J. E. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Stat. Soc. Ser. B Met. 48, 259–302 (1986). [CrossRef] [Google Scholar]
  3. S. Geman, and D. Geman, “Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images,” IEEE T. Pattern Anal. 6, 721–741 (1984). [CrossRef] [Google Scholar]
  4. H. C. Andrews, and B. R. Hunt, Digital image restoration (Prentice-Hall, Inc., New Jersey, 1977). [Google Scholar]
  5. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidil, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283–2291 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  6. T. F. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for finding global minimizers of image segmentation and denoising models,” SIAM J. Appl. Math. 66, 1632–1648 (2006). [CrossRef] [Google Scholar]
  7. S. Durand, and M. Nikolova, “Stability of the minimizers of least squares with a non-convex regularization. Part I: Local behavior,” J. Appl. Math. Optimizat. 53, 185–208 (2006). [Google Scholar]
  8. S. Durand, and M. Nikolova, “Stability of the minimizers of least squares with a non-convex regularization. Part II: Global behavior,” J. Appl. Math. Optimizat. 53, 259–277 (2006). [Google Scholar]
  9. M. Nikolova, Functionals for signal and image reconstruction: properties of their minimizers and applications (Centre de Mathématiques et de Leurs Applications CNRS-UMR 8536, 2006). [Google Scholar]
  10. M. Nikolova, “Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares,” Multiscale Model. Simul. 4, 960–991 (2005). [CrossRef] [Google Scholar]
  11. M. Nikolova, and M. Ng, “Analysis of half-quadratic minimization methods for signal and image recovery,” SIAM J. Sci. Comput. 27, 937–966 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  12. R. Pan, and S. J. Reeves, “Efficent Huber-Markov edge-preserving image restoration,” IEEE T. Image Process. 15, 3728–3735 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  13. C. Bouman, and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE T. Image Process. 2, 296–310 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  14. K. Sauer, and C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE T. Nucl. Sci. 39, 1144–1152 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. I. De la Rosa, and G. Fleury, “Bootstrap methods for a measurement estimation problem,” IEEE T. Instrum. Meas. 55, 820–827 (2006). [Google Scholar]
  16. J. I. De la Rosa, J. J. Villa, and Ma. A. Araiza, “Markovian random fields and comparison between different convex criteria optimization in image restoration,” in Proceedings to International Conference on Electronics, Communications, and Computers 2007, 1–6 (IEEE-UDLA, Cholula, 2007). [Google Scholar]
  17. M. Rivera, and J. L. Marroquin, “Efficent half-quadratic regularization with granularity control,” Image Vision Comput. 21, 345–357 (2003). [CrossRef] [Google Scholar]
  18. M. Rivera, and J. L. Marroquin, “Half-quadratic cost functions for phase unwrapping,” Opt. Lett. 29, 504–506 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  19. M. Rivera, “Robust phase demodulation of interferograms with open or closed fringes,” J. Opt. Soc. Am. A 22, 1170–1175 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  20. W. Pieczynski, and A.-N. Tebbache, “Pairwise Markov random fields and segmentation of textured images,” Machine Graph. Vision 9, 705–718 (2000). [Google Scholar]
  21. J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data,” in Proceedings to International Conference on Machine Learning 2001, 282–289 (International Machine Learning Society, Williamstown, 2001). [Google Scholar]
  22. S. Kumar, and H. Martial, “Discriminative random fields,” Int. J. Comput. Vision 68, 179–201 (2006). [CrossRef] [Google Scholar]
  23. A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T, Darrell “Hidden conditional random fields,” IEEE T. Pattern Anal. Mach. Intell. 29, 1848–1853 (2007). [Google Scholar]
  24. D. Benboudjema, and W. Pieczynski, “Unsupervised statistical segmentation of nonstationary images using triplet Markov fields,” IEEE T. Pattern Anal. Mach. Intell. 29, 1367–1378 (2007). [CrossRef] [Google Scholar]
  25. P. Zhang, M. Li, Y. Wu, L. Gan, M. Liu, F. Wang, and G. Liu, “Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model,” Pattern Recogn. 45, 4018–4033 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  26. F. Wang, Y. Wu, Q. Zhang, P. Zhang, M. Li, and Y. Lu, “Unsupervised change detection on SAR images using triplet Markov field model,” IEEE Geosci. Remote Sens. Lett. 10, 697–701 (2013). [CrossRef] [Google Scholar]
  27. D. Benboudjema, N. Othman, B. Dorizzi, and W. Pieczynski, “Segmentation d’ images des yeux par champs de markov triplets: Application à la biométrie,” in Proceedings to Colloque GRETSI 2013 (GRETSI, Brest, 2013). [Google Scholar]
  28. F. Champagnat, and J. Idier, “A connection between half-quadratic criteria and EM algorithms,” IEEE Signal. Proc. Lett. 11, 709–712 (2004). [CrossRef] [Google Scholar]
  29. P. Ciuciu, and J. Idier, “A half-quadratic block-coordinate descent method for spectral estimation,” Signal Processing 82, 941–959 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  30. P. Ciuciu, J. Idier, and J.-F. Giovannelli, “Regularized estimation of mixed spectra using circular Gibbs-Markov model,” IEEE T. Signal Proces. 49, 2202–2213 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  31. J.-F. Giovannelli, J. Idier, R. Boubertakh, and A. Herment, “Unsupervised frequency tracking beyond the Nyquist frequency using Markov chains,” IEEE T. Signal Proces. 50, 2905–2914 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  32. J. Idier, “Convex half-quadratic criteria and interacting auxiliary variables for image restoration,” IEEE T. Image Process. 10, 1001–1009 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  33. D. Geman, and G. Reinolds, “Constrained restoration and the recovery of discontinuities,” IEEE T. Pattern Anal. Mach. Intell. 14, 367–383 (1992). [CrossRef] [Google Scholar]
  34. D. Geman, and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE T. Image Process. 4, 932–946 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  35. M. Nikolova, and R. Chan, “The equivalence of half-quadratic minimization and the gradient linearization iteration,” IEEE T. Image Process. 16, 1623–1627 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  36. C. Labat, and J. Idier, Convergence of truncated half-quadratic algorithms using conjugate gradient (IRCCyN UMR CNRS 6597, 2006). [Google Scholar]
  37. C. Labat, Algorithmes d’optimisation de critères pénalisés pour la restauration d’images. Application à la déconvolution de trains d’impulsions en imagerie ultrasonore, (Ph.D. Thesis, École Centrale de Nantes, 2006) in French. [Google Scholar]
  38. A. L. Gibbs, Convergence of Markov Chain Monte Carlo algorithms with applications to image restoration, (Ph.D. Thesis, University of Toronto, 2000). [Google Scholar]
  39. R. M. Neal, Probabilistic inference using Markov chain Monte Carlo methods (Department of Computer Science, University of Toronto, Technical Report CRG-TR-93-1, 1993). [Google Scholar]
  40. C. P. Robert, and G. Casella, Monte Carlo Statistical Methods (Second edition, Springer Verlag, New York, 2004). [CrossRef] [Google Scholar]
  41. M. Allain, J. Idier, and Y. Goussard, “On global and local convergence of half-quadratic algorithms,” IEEE T. Image Process. 15, 1130–1142 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  42. M. Nikolova, M. K. Ng, and C.-P. Tam, “Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction,” IEEE T. Image Process. 19, 3073–3088 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  43. A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” in Proceedings to SIGGRAPH ’07, 10.1145/1275808.1276464 (ACM, San Diego, 2007). [Google Scholar]
  44. J. J. Villa, J. I. De la Rosa, G. Miramontes, and J. A. Quiroga, “Phase recovery from a single fringe pattern using an orientational vector field regularized estimator,” J. Opt. Soc. Am. A 22, 2766–2773 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  45. P. Perona, and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE T. Pattern Anal. Mach. Intell. 12, 629–639 (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.