Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13027
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2013.13027
Published online 11 April 2013
  1. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” P. Natl. Acad. Sci. USA 99, 5788–5792 (2002). [CrossRef] [Google Scholar]
  3. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–19 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16, 9290–305 (2008). [CrossRef] [Google Scholar]
  6. B. Potsaid, Y. Bellouard, and J. Wen, “Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13, 462–467 (2005). [Google Scholar]
  7. C. Bourgenot, C. D. Saunter, J. M. Taylor, J. M. Girkin, and G. D. Love, “3D adaptive optics in a light sheet microscope,” Opt. Express 20, 13252–61 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  8. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15, 046022 (2012). [Google Scholar]
  9. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825–827 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  10. P. Vermeulen, E. Muro, T. Pons, V. Loriette, and A. Fragola, “Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers,” J. Biomed. Opt. 16, 076019 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A 365, 2829–43 (2007). [CrossRef] [Google Scholar]
  12. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotech. 20, 106–110 (2009). [CrossRef] [Google Scholar]
  13. P. Artal, S. Marcos, R. Navarro, and D. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef] [Google Scholar]
  14. L. Diaz-Santana and J. C. Dainty, “Effects of retinal scattering in the ocular double-pass process,” J. Opt. Soc. Am. A 18, 1437–44 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wave-front sensing,” P. Natl. Acad. Sci. USA 103, 17137–42 (2006). [CrossRef] [Google Scholar]
  17. N. P. Doble, G. D. Love, D. F. Buscher, R. M. Myers, and A. Purvis, “Use of image quality metrics for correction of noncommon path errors in the ELECTRA adaptive optics system,” Proc. SPIE 3749, 785–786 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  18. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Techniq. 67, 36–44 (2005). [CrossRef] [Google Scholar]
  19. K. J. Jones, “NA variability and LGS elongation: impact on wavefront error,” Proc. SPIE 8149, 81490E–81490E-9 (2011). [Google Scholar]
  20. C. Robert, J.-M. Conan, D. Gratadour, C. Petit, and T. Fusco, “Shack-Hartmann tomographic wavefront reconstruction using LGS: analysis of spot elongation and fratricide effect,” 1st AO4ELT conference - Adaptive Optics for Extremely Large Telescopes 05010, 05010 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.