Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13026
Number of page(s) 4
DOI https://doi.org/10.2971/jeos.2013.13026
Published online 09 April 2013
  1. D. Compton, L. Cornish, E. Van der Lingen, “The third order nonlinear optical properties of gold nanoparticles in glasses,” Gold Bull. 36, 51–58 (2003). [CrossRef] [Google Scholar]
  2. P. N. Prasad, Nanophotonics (Wiley, New York, 2004). [CrossRef] [Google Scholar]
  3. S. E. Maiga, C. T. Nguyen, and N. Galanis, “Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” Int J. Numer. Method. H. 16, 275–292 (2006). [CrossRef] [Google Scholar]
  4. D. S. Wen, and W. Ding, “Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids),” IEEE. T. Nanotechnol. 5, 220–227 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  5. S. P. Jang, and S. U. S. Choi, “Cooling performance of a microchannel heat sink with nanofluids,” Appl. Therm. Eng. 26, 2457–2463 (2006). [CrossRef] [Google Scholar]
  6. K. H. Schifferli, J. J. Scwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, “Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,” Nature 415, 152–156 (2002). [CrossRef] [Google Scholar]
  7. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezck, “Technol Nanoshell-Enabled Photonics-based Imaging and Therapy of Cancer,” Cancer. Treat. 3, 33–40 (2004). [Google Scholar]
  8. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal Tumor Ablation in Mice Using Near Infrared-absorbing Nanoparticles,” Cancer. Lett. 209, 171–176 (2004). [CrossRef] [Google Scholar]
  9. G. Huttmann, and R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quant. 5, 954–962 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. L. J. Perez, R. G. Fuentes, J. F. S. Ramirez, and A. C. Orea, “Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J.-Spec. Top. 153, 159–161 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. J. L. J. Perez, R. G. Fuentes, E. M. Alvarad, E. R. Gallegos, A. C. Orea, J. T. Cordova, and J. G. M. Alvarez, “Enhancement of the thermal transport in a culture medium with Au nanoparticles,” Appl. Surf. Sci. 255, 701–702 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  12. Q. Xue, and W. M. Xu, “A Model of Thermal Conductivity of Nanofluids with Interfacial Shells,” Mater. Chem. Phys. 90, 298–301 (2005). [CrossRef] [Google Scholar]
  13. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–576 (1999). [CrossRef] [Google Scholar]
  14. J. L. J. Perez, J. F. S. Ramırez, R. G. Fuentes, A. C. Orea, and J. L. H. Perez, “Enhanced of the R6G Thermal Diffusivity on Aggregated Small Gold Particles,” Braz. J. Phys. 36, 1025–1028 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. E. Shahriari, W. M. M. Yunus, K. Naghavi, and Z. A. Talib, “Effect of concentration and particle size on nonlinearity of Au nano-fluid prepared by γ (60Co) radiation,” Opt. Commun. 283, 1929–1932 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996). [Google Scholar]
  17. J. Shen, M. L. Baesso, and R. D. Snook, “Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  18. T. Imasaka, K. Sakaki, and N. Ishibashi, “Determination of iron (II) with 2-nitroso-5-diethylaminophenol by thermal lens spectrophotometry using a semiconductor laser as a light source,” Anal. Chim. Acta. 243, 109–113 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  19. J. Shen, and R. D. Snook, “Thermal lens measurement of absolute quantum yields using quenched fluorescent samples as references,” Chem. Phys. Lett. 155, 583–586 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  20. J. M. Harris, and N. J. Dovichi, “Thermal lens calorimetry,” Anal. Chem. 52, 695–706 (1980). [Google Scholar]
  21. J. Shen, R. D. Lowe, and R. D. Snook, “Two-beam Thermal Lens Spectrometer for Ultra-trace Analysis,” Chem. Phys. 18, 403–408 (1998). [Google Scholar]
  22. J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  23. M. Sparks, “Optical distortion by heated windows in high power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971). [NASA ADS] [CrossRef] [Google Scholar]
  24. J. Turkevich, “Colloidal Gold Part II: Colour, Coagulation, Adhesion, Alloying and Catalytic Properties,” Gold Bull. 18, 125–131 (1985). [CrossRef] [Google Scholar]
  25. J. L. Jiménez-Pérez, J. F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Gutierrez-Fuentes, J. A. Pescador Rojas, A. Cruz-Orea, M. A. Algatti, et al., “Photothermal Study of Two Different Nanofluids Containing SiO2 and TiO2 Semiconductor Nanoparticles,” Int. J. Thermophys. 33, 69 (2012). [CrossRef] [Google Scholar]
  26. D. G. Cahill, W. K. Ford, and K. E. Goodson, “Nanoscale thermal transport,” J. Appl. Phys. 93, 793–818 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  27. C. W. Nan, R. Birringer, and D. R. Clarke, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81, 6692–6699 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  28. Z. B. Ge, D. G. Cahill, and P. V. Braun, “Thermal conductance of hydrophilic and hydrophobic interfaces,” Phys. Rev. Lett. 96, 186101–186104 (2006). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.