Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13028
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2013.13028
Published online 15 April 2013
  1. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102(R) (2011). [Google Scholar]
  2. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254 (2004). [Google Scholar]
  3. D. R. Smith, and J. B. Pendry, “Homogenization of metamaterials by field averaging (invited paper),” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef] [Google Scholar]
  4. B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778–780 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957–2963 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. Z. L. Lu, and D. W. Prather, “Calculation of effective permittivity, permeability, and surface impedance of negative-refraction photonic crystals,” Opt. Express 15, 8340–8345 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  7. V. Yannopapas, and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005). [CrossRef] [Google Scholar]
  8. Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74, 085111 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007). [CrossRef] [Google Scholar]
  10. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  12. S. O’Brien, and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002). [CrossRef] [Google Scholar]
  13. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  14. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef] [Google Scholar]
  15. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  16. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008). [CrossRef] [Google Scholar]
  18. C. R. Simovski, “Material parameters of metamaterials,” Opt. Spectrosc. 107, 726–753 (2009). [CrossRef] [Google Scholar]
  19. C. Tserkezis and N. Stefanou, “Retrieving local effective constitutive parameters for anisotropic photonic crystals,” Phys. Rev. B 81, 115112 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  20. X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84, 235106 (2011). [CrossRef] [Google Scholar]
  21. J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of meta-materials,” Photonics Nanostruct. Fundam. Appl. 6, 96–101 (2008). [CrossRef] [Google Scholar]
  22. J. F. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80, 035109 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  23. W. C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phys. Rev. B 85, 035112 (2012). [CrossRef] [Google Scholar]
  24. S. Engelbrecht, A. M. Shuvaev, Ch. Kant, K. Unterrainer, and A. Pimenov, “Experimental determination of effective parameters in a layered metamaterial,” Phys. Rev. B 85, 235437 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  25. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553f (2007). [NASA ADS] [CrossRef] [Google Scholar]
  26. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  27. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, S. R. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, et al., “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005). [CrossRef] [Google Scholar]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [Google Scholar]
  29. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical Near-Field Microscopy of Light Focusing through a Photonic Crystal Flat Lens,” Phys. Rev. Lett. 101, 073901 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  30. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B 77, 235445 (2008). [CrossRef] [Google Scholar]
  31. A. Andryieuski, S. Ha, A. A. Sukhorukov, Y. S. Kivshar, and A. V. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127 (2012). [CrossRef] [Google Scholar]
  32. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974). [CrossRef] [Google Scholar]
  33. Dong Jun Technology, EastFDTD v3.0, (Dongjun Information Technology Co., Shanghai, 2011). [Google Scholar]
  34. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express 19, 19027–19041 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  35. J. A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bian-isotropic response,” New J. Phys. 13, 073041 (2011). [CrossRef] [Google Scholar]
  36. P. Y. Chen, C. G. Poulton, A. A. Asatryan, M. J. Steel, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Folded bands in metamaterial photonic crystals,” New J. Phys. 13, 053007 (2011). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.