EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 27
Number of page(s) 19
DOI https://doi.org/10.1051/jeos/2025017
Published online 27 June 2025
  1. Gissibl T, Thiele S, Herkommer A, Giessen H, Two photon direct laser writing of ultracompact multi-lens objectives, Nat. Photonics. 10, 554 (2016). https://doi.org/10.1038/nphoton.2016.121. [Google Scholar]
  2. Tsutsumi N, Hirota J, Kinashi K, Sakai W, Direct laser writing for micro-optical devices using a negative photoresist, Opt. Express 25, 31539 (2017). https://doi.org/10.1364/oe.25.031539. [Google Scholar]
  3. Qi H, Chen T, Yao L, Zuo T, Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation, Opt. Lasers Eng. 47, 594 (2009). https://doi.org/10.1016/j.optlaseng.2008.09.004. [Google Scholar]
  4. Alsharhan TA, Young OM, Xu X, Stair AJ, Sochol RD, Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing, J. Micromech. Microeng. 31, 044001 (2021). https://doi.org/10.1088/1361-6439/abec1c. [Google Scholar]
  5. Teh KS, Additive direct-write microfabrication for MEMS: a review, Front. Mech. Eng. 12, 490 (2017). https://doi.org/10.1007/s11465-017-0484-4. [Google Scholar]
  6. Reeves JB, Jayne RK, Barrett L, White AE, Bishop DJ, Fabrication of multi-material 3D structures by the integration of direct laser writing and MEMS stencil patterning, Nanoscale 11, 3261 (2019). https://doi.org/10.1039/c8nr09174a. [Google Scholar]
  7. Moughames J, Jradi S, Chan TM, Akil S, Battie Y, Naciri AE, Herro Z, Guenneau S, Enoch S, Joly L, Cousin J, Bruyant A, Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials, Sci. Rep. 6, 33627 (2016). https://doi.org/10.1038/srep33627. [Google Scholar]
  8. Sakellari I, Yin X, Nesterov ML, Terzaki K, Xomalis A, Farsari M, 3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle, Adv. Opt. Mat. 5, 1700200 (2017). https://doi.org/10.1002/adom.201700200. [Google Scholar]
  9. von Freymann G, Ledermann A, Thiel M, Staude I, Essig S, Busch K, Wegener M, Three-dimensional nanostructures for photonics, Adv. Funct. Mater. 20, 1038 (2010). https://doi.org/10.1002/adfm.200901838. [Google Scholar]
  10. Hahn V, Kiefer P, Frenzel T, Qu J, Blasco E, Barner-Kowollik C, Wegener M, Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials, Adv. Funct. Mater. 30, 1907795 (2020). http://doi.org/10.1002/adfm.201907795. [Google Scholar]
  11. An J, Le TSD, Lim CHJ, Tran VT, Zhan Z, Gao Y, Zheng L, Sun G, Kim YJ, Single-step selective laser writing of flexible photodetectors for wearable optoelectronics, Adv. Sci. 5, 1800496 (2018). http://doi.org/10.1002/advs.201800496. [Google Scholar]
  12. Liu W, Huang Y, Peng Y, Walczak M, Wang D, Chen Q, Liu Z, Li L, Stable wearable strain sensors on textiles by direct laser writing of graphene, ACS Appl. Nano Mater. 3, 283 (2020). http://doi.org/10.1021/acsanm.9b01937. [Google Scholar]
  13. Snow S, Jacobsen SC, Microfabrication processes on cylindrical substrates – Part II: Lithography and connections, Microelectron. Eng. 84, 11 (2007). https://doi.org/10.1016/j.mee.2006.06.009. [Google Scholar]
  14. Gehring H, Blaicher M, Grottke T, Pernice WHP, Reconfigurable nanophotonic circuitry enabled by direct-laser-writing, IEEE J. Sel. Top. Quantum Electron. 26, 1 (2020). https://doi.org/10.1109/jstqe.2020.3004278. [Google Scholar]
  15. Fendler C, Denker C, Harberts J, Bayat P, Zierold R, Loers G, Münzenberg M, Blick RH, Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks, Adv. Biosyst. 3, e1800329 (2019). https://doi.org/10.1002/adbi.201800329. [Google Scholar]
  16. Leineweber J, Hebenstreit R, Häcker AV, Meyer C, Füßl R, Manske E, Theska R, Charakterisierung eines parallelkinematisch aktuierten In-situ Referenzmesssystems für 5D-Nanomess- und Fabrikationsanwendungen, Technisches Messen. 91, 102 (2024). https://doi.org/10.1515/teme-2023-0109. [Google Scholar]
  17. Jäger G, Manske E, Hausotte T, Müller A, Balzer F, Nanopositioning and nanomeasuring machine NPMM-200 – a new powerful tool for large-range micro- and nanotechnology, Surf. Topogr. Metrol. Prop. 4, 034004 (2016). https://doi.org/10.1088/2051-672x/4/3/034004. [Google Scholar]
  18. De Groot P, Principles of interference microscopy for the measurement of surface topography, Adv. Opt. Photonics 7, 1 (2015). https://doi.org/10.1364/aop.7.000001. [Google Scholar]
  19. Kim CS, Yoo H, Three-dimensional confocal reflectance microscopy for surface metrology, Meas. Sci. Technol. 32, 102002 (2021). https://doi.org/10.1088/1361-6501/ac04df. [Google Scholar]
  20. Podoleanu AG, Optical coherence tomography, J. Microsc. 247, 209 (2012). https://doi.org/10.1111/j.1365-2818.2012.03619.x. [Google Scholar]
  21. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation, Opt. Express 12, 2404 (2024). https://doi.org/10.1364/opex.12.002404. [Google Scholar]
  22. Li J, Ma R, Bai J, High-precision chromatic confocal technologies: a review, Micromachines 15, 1224 (2024). https://doi.org/10.3390/mi15101224. [Google Scholar]
  23. Novak J, Miks A, Hyperchromats with linear dependence of longitudinal chromatic aberration on wave length, Optik 116, 165 (2005). https://doi.org/10.1016/j.ijleo.2005.01.003. [Google Scholar]
  24. Lu W, Chen C, Zhu H, Wang J, Leach R, Liu X, Wang J, Jiang X, Fast and accurate mean-shift vector based wavelength extraction for chromatic confocal microscopy, Meas. Sci. Technol. 30, 115104 (2019). https://doi.org/10.1088/1361-6501/ab2eab. [Google Scholar]
  25. Gu M, Sheppard CJR, Gan X, Image formation in a fiber-optical confocal scanning microscope, J. Opt. Soc. Am. A. 8, 1755 (1991). https://doi.org/10.1364/josaa.8.001755. [Google Scholar]
  26. Wilson T, Sheppard CJR, Theory and practice of scanning optical microscopy, 1st edn. (Academic Press Inc. Ltd, 1984). https://doi.org/10.1002/crat.2170201211. Available at https://www.researchgate.net/publication/234419246_Theory_And_Practice_Of_Scanning_Optical_Microscopy (accessed on: 2018 Mar 29). [Google Scholar]
  27. Mastylo R, Manske E, Jäger G, Entwicklung eines Fokussensors und Integration in die Nanopositionier und Nanomessmaschine (Development of a focus sensor and its integration into the nanopositioning and nanomeasuring machine), Technisches Messen. 71, 596 (2004). https://doi.org/10.1524/teme.71.11.596.51377. [Google Scholar]
  28. Wang Y, Liu J, Tan J, Differential confocal microscopy, in Confocal microscopy, in edited by J. Liu, J Tan (Morgan Claypool Publishers, 2016), p. 1–8. https://doi.org/10.1088/978-1-6817-4337-0ch7. [Google Scholar]
  29. Shimizu Y, Maruyama T, Nakagawa S, Chen YL, Matsukuma H, Gao W, A PD-edge method associated with the laser autocollimation for measurement of a focused laser beam diameter, Meas. Sci. Technol 29, 074006 (2018). https://doi.org/10.1088/13616501/aac0a6. [Google Scholar]
  30. Dinh VH, Hoang LP, Vu YNT, Cao XB, Auto focus methods in laser systems for use in high precision materials processing: a review, Meas. Sci. Technol. 167, 107625 (2023). https://doi.org/10.1016/j.optlaseng.2023.107625. [Google Scholar]
  31. Mastylo R, Dontsov D, Manske E, Jager G, A focus sensor for an application in a nanopositioning and nanomeasuring machine, in Optical Measurement Systems for Industrial Inspection IV, vol. 5856, edited by W. Osten, C. Gorecki, E.L. Novak (SPIE, 2005), p. 238. https://doi.org/10.1117/12.612887. [Google Scholar]
  32. Tan J, Wang F, Theoretical analysis and property study of optical focus detection based on differential con focal microscopy, Meas. Sci. Tech. 13, 1289 (2002). https://doi.org/10.1088/0957-0233/13/8/317. [Google Scholar]
  33. Liu J, Tan J, Bin H, Wang Y, Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility, Appl. Opt. 48, 6195 (2009). https://doi.org/10.1364/ao.48.006195 [Google Scholar]
  34. Dobosz M, Optical profilometer: a practical approximate method of analysis, Appl. Opt. 22, 3983 (1983). https://doi.org/10.1364/ao.22.003983. [Google Scholar]
  35. Wang T, Wang Z, Yang Y, Mi X, Ti Y, Wang J, A differential confocal sensor for simultaneous position and slope acquisitions based on a zero-crossing prediction algorithm, Sensors 23, 1453 (2023). https://doi.org/10.3390/s23031453. [Google Scholar]
  36. Belkner J, Hofmann M, Kirchner J, Manske E, Demonstration of aberration-robust high-frequency modulated differential confocal microscopy with an oscillating pinhole, in Optics and Photonics for Advanced Dimensional Metrology, edited by P.J. De Groot, R.K. Leach, P. Picart (SPIE, 2000). https://doi.org/10.1117/12.2555558. [Google Scholar]
  37. Zhao W, Tan J, Qiu L, Bipolar absolute differential confocal approach to higher spatial resolution, Opt. Express 12, 5013 (2004). https://doi.org/10.1364/opex.12.005013. [Google Scholar]
  38. Qiu L, Zhao W, Feng Z, Ding X, A lateral super-resolution differential confocal technology with phase- only pupil filter, Optik 118, 67 (2007). https://doi.org/10.1016/j.ijleo.2005.12.013. [Google Scholar]
  39. Tan J, Liu J, Wang Y, Differential confocal microscopy with a wide measuring range based on polychromatic illumination, Meas. Sci. Technol. 21, 054013 (2010). https://doi.org/10.1088/0957-0233/21/5/054013. [Google Scholar]
  40. Chen LC, Nguyen DT, Chang YW, Precise optical surface profilometry using innovative chromatic differential confocal microscopy, Opt. Lett. 41, 5660 (2016). https://doi.org/10.1364/OL.41.005660. Available from: http://ol.osa.org/abstract.cfm?URI=ol-41-24-5660 (accessed on: April 30, 2018). [Google Scholar]
  41. Chen LC, Chang YW, Li HW, Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks, Opt. Eng. 51, 081507 (2012). https://doi.org/10.1117/1.OE.51.8.081507. [Google Scholar]
  42. Zhao W, Liu C, Qiu L, Laser divided-aperture differential confocal sensing technology with improved axial resolution, Opt. Express 20, 25979 (2012). https://doi.org/10.1364/oe.20.025979. [Google Scholar]
  43. Corle TR, Fanton JT, Kino GS, Distance measurements by differential confocal optical ranging, Appl. Opt. 26, 2416 (1987). https://doi.org/10.1364/ao.26.002416. [Google Scholar]
  44. Hausotte T, Gröschl A, Schaude J, High-speed focal-distance-modulated fiber-coupled confocal sensor for coordinate measuring systems, Appl Opt. 57, 3907 (2018). https://doi.org/10.1364/AO.57.003907. [Google Scholar]
  45. Kirchner J, Mastylo R, Gerhardt U, Fern F, Weidenfeller L, Sasiuk T, Manske E, Schienbein R, Hofmann M, Sinzinger S, Anwendungen eines fasergekoppelten chromatisch konfokalen Sensors in Nanopositionier und Nanomessmaschinen (Applications of a fiber coupled chromatic confocal sensor in nanopositioning and nanomeasuring machines), Technisches Messen 86, 17 (2019). https://doi.org/10.1515/teme-2019-0041. [Google Scholar]
  46. Belkner J, Beiträge zum Direktlaserschreiben auf gekrümmten Oberflächen, Doktoringenieur (Dr.-Ing.), Technischen Universität Ilmenau, 2024. https://doi.org/10.22032/dbt.64256. [Google Scholar]
  47. Dereniak EL, Dereniak TD, Geometrical and Trigonometric Optics (Cambridge University Press, Cambridge, UK, 2008). [Google Scholar]
  48. Dobson SL, Sun PC, Fainman Y, Diffractive lenses for chromatic confocal imaging, Appl. Opt. 36, 4744 (1997). https://doi.org/10.1364/ao.36.004744. [Google Scholar]
  49. Cui CC, Li H, Yu Q, Ye RF, Design of adjustable dispersive objective lens for chromatic confocal system, Opt. Precis. Eng. 25, 875 (2017). https://doi.org/10.3788/ope.20172504.0875. [Google Scholar]
  50. Mitschunas B, Sinzinger S, Startsystemfindung von Zoomoptiken mit Hilfe der Ilmenauer Software PARAX, DGaO – Proceedings Erlangen-Nürnberg: Dt. Gesellschaft für angewandte Optik 118, P5 (2017). Available at https://www.db-thueringen.de/receive/dbt_mods_00032926. [Google Scholar]
  51. Kingslake R, Johnson RB, Lens design fundamentals (Academic Press, 2009). [Google Scholar]
  52. SCHOTT North America Inc, Optical glass data sheets, 2017. Available at https://refractiveindex.info/download/data/2017/schott_2017-01-20.pdf. [Google Scholar]
  53. Sultanova N, Kasarova S, Nikolov I, Dispersion properties of optical polymers, Acta Phys. Pol. A 116, 585 (2009). https://doi.org/10.12693/aphyspola.116.585. [Google Scholar]
  54. Malitson IH, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205 (1965). https://doi.org/10.1364/josa.55.001205. [NASA ADS] [CrossRef] [Google Scholar]
  55. Li HH, Refractive index of alkaline earth halides and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 161 (1980). https://doi.org/10.1063/1.555616. [Google Scholar]
  56. LLC Z, Zemax OpticStudio 15.5 SP2. SP2. Version February 8, 2016, 2000. Available from: www.zemax.com (accessed on 17 October, 2023). [Google Scholar]
  57. Anderson F, Real time, video image centroid tracker, Proc. SPIE 1304, Acquisition, Tracking, and Pointing IV (SPIE, 1990). https://doi.org/10.1117/12.2322200. [Google Scholar]
  58. Wallin A, One-Inch-Photodetector, GitHub Repository (GitHub, 2020). Available from: https://github.com/aewallin/One-Inch-Photodetector (accessed on 23 October, 2023). [Google Scholar]
  59. Principles of lock-in detection and the state of the art, Technical report (Zurich Instruments AG, 2016). Available from: https://ziweb4.zhinst.com/applications/principles-oflock-in-detection (accessed on 3 March, 2020). [Google Scholar]
  60. Hausotte T, in Nanopositionier- und Nanomessmaschinen : Geräte für hochpräzise makro- bis nanoskalige Oberflächen- und Koordinatenmessungen, Habilitationsschrift, Chapter 10 (Pro Business, Berlin, 2011), p. 127–139. ISBN: 9783868059489. Available from: http://d-nb.info/1014995019. [Google Scholar]
  61. Stauffenberg J, Ortlepp I, Belkner J, Dontsov D, Langlotz E, Hesse S, Rangelow I, Manske E, Measurement precision of a planar nanopositioning machine with a range of motion of Ø100 mm, Appl. Sci. 12, 7843 (2022). https://doi.org/10.3390/app12157843. [Google Scholar]
  62. Stauffenberg J, Belkner J, Dontsov D, Herzog L, Hesse S, Rangelow IW, Ortlepp I, Kissinger T, Manske E, Investigations on tip-based large area nanofabrication and nanometrology using a planar nanopositioning machine (NFM-100), Meas. Sci. Technol. 35, 085011 (2024). https://doi.org/10.1088/1361-6501/ad4668. [Google Scholar]
  63. Xie W, Transfer characteristics of white light interferometers and confocal microscopes, PhD thesis (Universität Kassel, Fachbereich Elektrotechnik / Informatik, Kassel, 2017). Available at https://urn.fi/urn:nbn:de:hebis:34-2017112353867. [Google Scholar]
  64. Pahl T, Hagemeier S, Bischoff J, Manske E, Lehmann P, Rigorous 3D modeling of confocal microscopy on 2D surface topographies, Meas. Sci. Technol. 32, 094010 (2021). https://doi.org/10.1088/1361-6501/abfd69. [Google Scholar]
  65. Rahlves M, Roth B, Reithmeier E, Systematic errors on curved microstructures caused by aberrations in confocal surface metrology, Opt. Express 23, 9640 (2015). https://doi.org/10.1364/oe.23.009640. [Google Scholar]
  66. Belkner J, Ortlepp I, Gerhardt U, Manske E, Compensating aberration induced error in differential confocal microscopy, in Optical Measurement Systems for Industrial Inspection XII, vol. 11782, edited by Lehmann P, Osten W, Gonçalves AA (SPIE, 2021), p. 117820P. https://doi.org/10.1117/12.2592392. [Google Scholar]
  67. Qiu L, Liu D, Zhao W, Cui H, Sheng Z, Real-time laser differential confocal microscopy without sample reflectivity effects, Opt. Express 22, 21626 (2014). https://doi.org/10.1364/oe.22.021626. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.