Open Access
Review
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 26
Number of page(s) 28
DOI https://doi.org/10.1051/jeos/2025014
Published online 11 June 2025
  1. Manohar S., Razansky D., Photoacoustics: a historical review, Adv. Opt. Photon. 8, 586 (2016). https://doi.org/10.1364/AOP.8.000586. [Google Scholar]
  2. Wissmeyer G, Pleitez MA, Rosenthal A, Ntziachristos V, Looking at sound: optoacoustics with all-optical ultrasound detection, Light. Sci. Appl. 7, 53 (2018). https://doi.org/10.1038/s41377-018-0036-7. [Google Scholar]
  3. Tang S.-J., Zhang M., Sun J., Meng J.-W., Xiong X., Gong Q., Jin D., Yang Q.-F., Xiao Y.-F., Single-particle photoacoustic vibrational spectroscopy using optical microresonators, Nat. Photon. 17, 951 (2023). https://doi.org/10.1038/s41566-023-01264-3. [Google Scholar]
  4. Boyd R, Nonlinear optics (Academic Press, New York, NY 2008). [Google Scholar]
  5. Frigenti G, Farnesi D, Nunzi Conti G, Soria S, Nonlinear optics in microspherical resonators, Micromachines 11, 303 (2020). https://doi.org/10.3390/mi110303036. [Google Scholar]
  6. Kozyreff G, Dominguez-Juarez JL, Martorell J, Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes, Laser Photonics Rev. 5, 737 (2011). https://doi.org/10.1002/lpor.201000036. [Google Scholar]
  7. Lin G, Coillet A, Chembo Y-K, Nonliner phtonics with high-Q whsipering gallery mode resonators, Adv. Opt. Photon. 9, 828 (2017). https://doi.org/10.1364/AOP.9.000828. [Google Scholar]
  8. Frigenti G, Berneschi S, Farnesi D, Pelli S, Righini GC, Soria S, Dumeige Y, Féron P, Ristić D, Prudenzano F, Ferrari M, Nunzi Conti G, Rare earth-doped glass whispering gallery mode micro-lasers, Eur. Phys. J. Plus 138, 679 (2023). https://doi.org/10.1140/epjp/s13360-023-04275-9. [Google Scholar]
  9. Righini GC, Soria S, Biosensing by WGM micro spherical resonators, Sensors 16, 905 (2016). https://doi.org/10.3390/s16060905. [Google Scholar]
  10. Vollmer F, Arnold S, Whispering-gallery-mode biosensing: label-free detection down to single molecules, Nat. Methods 5, 591 (2008). https://doi.org/10.1038/nmeth.1221. [CrossRef] [Google Scholar]
  11. Peng B, Özdemir Ş, Lei F, Monifi F, Gianfreda M, Long GL, Fan S, Nori F, Bender CM, Yang L, Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394 (2014). https://doi.org/10.1038/nphys2927. [CrossRef] [Google Scholar]
  12. Kippenberg T, Spillane S, Vahala K, Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett. 93, 083904 (2004). https://doi.org/10.1103/PhysRevLett.93.083904. [NASA ADS] [CrossRef] [Google Scholar]
  13. Fürst JU, Strekalov DV, Elser D, Aiello A, Andersen UL, Marquardt C, Leuchs G, Quantum light from a whispering-gallery-mode disk resonator, Phys. Rev. Lett. 106, 113901 (2011). https://doi.org/10.1103/PhysRevLett.106.113901. [Google Scholar]
  14. Aspelmeyer M, Kippenberg TJ, Marquardt F, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014). https://doi.org/10.1103/RevModPhys.86.1391. [Google Scholar]
  15. An N, Li Y, Zhang H, Liang Y, Tan T, Guo Y, Liu Z, Liu M, Guo Y, Wu Y, Peng B, Rao Y, Zhao G, Yao B, Brillouin lasers in a graphene microresonator for multispecies and individual gas molecule detection, APL Photonics 8, 100801 (2023). https://doi.org/10.1063/5.0164107. [Google Scholar]
  16. Rosello-Mecho X, Farnesi D, Frigenti G, Barucci A, Ratto F, Fernandez-Bienes A, Garcia-Fernandez T, Delgado-Pinar M, Andrés M, Nunzi Conti G, Soria S, Parametrical optomechanical oscillations in phoxonic whispering gallery mode resonators, Sci. Rep. 9, 7163 (2019). https://doi.org/10.1038/s41598-019-43271-x. [Google Scholar]
  17. Kippenberg TJ, Vahala KJ, Cavity optomechanics, Opt. Express 15, 17172 (2007). https://doi.org/10.1364/OE.15.017172. [Google Scholar]
  18. Carmon T, Rokhsari H, Yang L, Kippenberg TJ, Vahala KJ, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett. 94, 223902 (2005). https://doi.org/10.1103/PhysRevLett.94.223902. [Google Scholar]
  19. Frigenti G, Cavigli L, Fernández-Bienes A, Ratto F, Centi S, García-Fernández T, Nunzi Conti G, Soria S, Resonant microbubble as a microfluidic stage for all-optical photoacoustic sensing, Phys. Rev. Appl. 12, 014062 (2019). https://doi.org/10.1103/PhysRevApplied.12.014062. [Google Scholar]
  20. Cosimo T, Long period fiber grating-based biosensing: recent trends and future perspectives, TrAC Trends Anal. Chem. 179, 117875 (2024). https://doi.org/10.1016/j.trac.2024.117875. [Google Scholar]
  21. Rayleigh L, The problem of the whispering gallery, Phil. Mag. 20, 1001 (1910). https://doi.org/10.1080/14786441008636993. [Google Scholar]
  22. Vahala KJ, Optical microcavities, Nature 424, 839 (2003). https://doi.org/10.1038/nature01939. [CrossRef] [PubMed] [Google Scholar]
  23. Righini G, Dumeige Y, Feron P, Ferrari M, Nunzi Conti G, Soria S, Ristiić D, Whispering gallery mode microresonators: fundamentals and applications, Riv. Nuovo Cimento 34, 435 (2011). https://doi.org/10.1393/ncr/i2011-10067-2. [Google Scholar]
  24. Chiasera A, Dumeige Y, Feron P, Ferrari M, Jestin Y, Nunzi Conti G, Pelli S, Soria S, Righini G, Spherical whispering-gallery-mode microresonators, Laser Photonics Rev. 4, 457 (2010). https://doi.org/10.1002/lpor.200910016. [Google Scholar]
  25. Ward J, Benson O, WGM microresonators: sensing, lasing and fundamental optics with microspheres, Laser Photonics Rev. 5, 553 (2011). https://doi.org/10.1002/lpor.201000025. [Google Scholar]
  26. Ward JM, Yang Y, Chormaic SN, Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications, Sci Rep 6, 25152 (2016). https://doi.org/10.1038/srep25152. [Google Scholar]
  27. Lu F, Alaie S, Leseman Z, Hossein-Zadeh M, Sub-pg mass sensing and measurement with an optomechanical sensor, Opt. Express 21, 19555 (2013). https://doi.org/10.1364/OE.21.019555. [Google Scholar]
  28. Ward JM, O’Shea DG, Shortt BJ, Morrissey MJ, Deasy K, Chormaic SGN, Heat-and-pull rig for fiber taper fabrication, Rev. Sci. Instrum. 77, 083105 (2006). https://doi.org/10.1063/1.2239033. [Google Scholar]
  29. Nunzi Conti G, Barucci A, Berneschi S, Brenci M, Cosi F, Farnesi D, Pelli S, Righini G, Soria S, Coupling approaches and new geometries in whispering-gallery-mode resonators, Proc. SPIE 8236, 82360V (2012). https://doi.org/10.1117/12.909596. [Google Scholar]
  30. Farnesi D, Chiavaioli F, Righini G, Soria S, Trono C, Jorge P, Nunzi Conti G, Long period grating-based fiber coupler to whispering gallery mode resonators, Opt. Lett. 39, 6525 (2014). https://doi.org/10.1364/OL.39.006525. [Google Scholar]
  31. Farnesi D, Chiavaioli F, Righini G, Soria S, Trono C, Baldini F, Trono C, Nunzi Conti G, Quasi distributed and wavelegnth selective addressing of optical microresonators base don long period fiber gratings, Opt. Express 23, 21175 (2015). https://doi.org/10.1364/OE.23.021175. [Google Scholar]
  32. Nunzi Conti G, Berneschi S, Cosi F, Pelli S, Soria S, Righini GC, Dispenza M, Secchi A, Planar coupling to high-Q lithium niobate disk resonators, Opt. Express 19, 3651 (2011). https://doi.org/10.1364/OE.19.003651. [Google Scholar]
  33. Soltani M, Ilchenko V, Matsko A, Savchenkov A, Schlafer J, Ryan C, Maleki L, Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip, Opt. Lett. 41, 4375 (2016). https://doi.org/10.1364/OL.41.004375. [Google Scholar]
  34. Zhuang Y, Kumazaki H, Fujii S, Imamura R, Daud NAB, Ishida R, Chen H, Tanabe T, Coupling of a whispering gallery mode to a silicon chip with photonic crystal, Opt. Lett. 44, 5731 (2019). https://doi.org/10.1364/OL.44.005731. [Google Scholar]
  35. Farnesi D, Pelli S, Soria S, Nunzi Conti G, Roux XL, Ballester MM, Vivien L, Cheben P, Alonso-Ramos C, Metamaterial engineered silicon photonic coupler for whispering gallery mode microsphere and disk resonators, Optica 8, 1511 (2021). https://doi.org/10.1364/OPTICA.438395. [Google Scholar]
  36. Ilchenko V, Yao X, Maleki L, Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes, Opt. Lett. 24, 723 (1999). https://doi.org/10.1364/OL.24.000723. [Google Scholar]
  37. Farnesi D, Cosi F, Trono C, Righini GC, Nunzi Conti G, Soria S, Stimulated anti-Stokes Raman scattering resonantly enhanced in silica microspheres, Opt. Lett. 39, 5993 (2014). https://doi.org/10.1364/OL.39.005993. [Google Scholar]
  38. Farnesi D, Berneschi S, Cosi F, Righini G, Soria S, Nunzi Conti G, Stimulated stokes and antistokes raman scattering in microspherical whispering gallery mode resonators, J Vis Exp. 4, e53938 (2016). https://doi.org/10.3791/53938. [Google Scholar]
  39. Chang RK, Campillo AJ, Optical processes in microcavities (World Scientific, Singapore, 1996). [CrossRef] [Google Scholar]
  40. Lin H, Huston A, Justus B, Campillo A, Some characteristics of a droplet Whispering-Gallery-Mode laser, Opt. Lett. 11, 614 (1986). https://doi.org/10.1364/OL.11.000614. [Google Scholar]
  41. Foreman MR, Avino S, Zullo R, Loock H-P, Vollmer F, Gagliardi G, Enhanced nanoparticle detection with liquid droplet resonator, Eur Phys. J. Spec. Top. 223, 1971 (2014). https://doi.org/10.1140/epjst/e2014-02240-9. [Google Scholar]
  42. Maayani S, Martin LL, Carmon T, Water-walled microfluidics for high-optical finesse cavities, Nat. Commun. 7, 10435 (2016). https://doi.org/10.1038/ncomms10435. [Google Scholar]
  43. Sumetsky M, Whispering-gallery-bottle microcavities: the three-dimensional etalon, Opt. Lett. 29, 8 (2004). https://doi.org/10.1364/OL.29.000008. [Google Scholar]
  44. Sumetsky M, Dulashko Y, Windeler RS, Optical microbubble resonator, Opt. Lett. 35, 898 (2010). https://doi.org/10.1364/OL.35.000898. [Google Scholar]
  45. Grimaldi IA, Berneschi S, Testa G, Baldini F, Nunzi Conti G, Bernini R, Polymer based planar coupling of self-assembled bottle microresonators, Appl. Phys. Lett. 105, 231114 (2014). https://doi.org/10.1063/1.4904013. [Google Scholar]
  46. Gu G, Guo C, Cai Z, Xu H, Chen L, Fu H, Che K, Hong M, Sun S, Li F, Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring, Appl. Opt. 53, 7819 (2014). https://doi.org/10.1364/AO.53.007819. [Google Scholar]
  47. Amorim VA, Frigenti G, Baldini F, Berneschi S, Farnesi D, Jorge PAS, Maia JM, Conti GN, Santos PSSD, Marques PVS, Integrated all-in-silica optofluidic platform based on microbubble resonator and femtosecond laser written surface waveguide, IEEE Sens. J. 24, 25573 (2024). https://doi.org/10.1109/JSEN.2024.3418203. [Google Scholar]
  48. Berneschi S, Farnesi D, Cosi F, Nunzi Conti G, Pelli S, Righini GC, Soria S, High Q silica microbubble resonators fabricated by arc discharge, Opt. Lett. 36, 3521 (2011). https://doi.org/10.1364/OL.36.003521. [Google Scholar]
  49. Tachikura M, Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes, Appl. Opt. 23, 492 (1984). https://doi.org/10.1364/AO.23.000492. [Google Scholar]
  50. Frigenti G, Arjmand M, Barucci A, Baldini F, Berneschi S, Farnesi D, Gianfreda M, Pelli S, Soria S, Aray A, Dumeige Y, Féron P, Conti GN, Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy, J. Opt. 20, 065706 (2018). https://doi.org/10.1088/2040-8986/aac459. [Google Scholar]
  51. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ, Ultra-high-Q toroid microcavity on a chip, Nature 421, 925 (2003). https://doi.org/10.1038/nature01371. [CrossRef] [Google Scholar]
  52. Balac S, Féron P, Whispering gallery modes volume computation in optical micro-spheres, Technical report, FOTON, UMR CNRS 6082, 2014. [Google Scholar]
  53. Frigenti G, Ph.D. thesis, University of Florence, 2021. http://hdl.handle.net/2158/1237013 [Google Scholar]
  54. Guigot C, Leduc D, Lecieux Y, Classification of whispering gallery modes for cladded systems, Opt. Laser Technol. 174, 110572 (2024). https://doi.org/10.1016/j.optlastec.2024.110572. [Google Scholar]
  55. Palma G, Falconi C, Nazabal V, Yano T, Kishi T, Kumagai T, Ferrari M, Prudenzano F, Modeling of whispering gallery modes for rare earth spectroscopic characterization, IEEE Photonics Technol. Lett. 27, 1861 (2015). https://doi.org/10.1109/LPT.2015.2443915. [Google Scholar]
  56. Palma G, Falconi MC, Starecki F, Nazabal V, Yano T, Kishi T, Kumagai T, Prudenzano F, Novel double step approach for optical sensing via microsphere wgm resonance, Opt. Express 24, 26956 (2016). https://doi.org/10.1364/OE.24.026956. [Google Scholar]
  57. Teraoka I, Arnold S, Vollmer F, Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium, J. Opt. Soc. Am. B 20, 1937 (2003). https://doi.org/10.1364/JOSAB.20.001937. [Google Scholar]
  58. Teraoka I, Arnold S, Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications, J. Opt. Soc. Am. B 23, 1381 (2006). https://doi.org/10.1364/JOSAB.23.001381. [Google Scholar]
  59. Yariv A, Yeh P, Photonics: optical electronics in modern communications (Oxford University Press, Oxford, UK, 2023). [Google Scholar]
  60. Louyer Y, Meschede D, Rauschenbeutel A, Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics, Phys. Rev. A 72, 031801 (2005). https://doi.org/10.1103/PhysRevA.72.031801. [Google Scholar]
  61. Bianucci P, Optical microbottle resonators for sensing, Sensors 16, 1841 (2016). https://doi.org/10.3390/s16111841. [Google Scholar]
  62. Soria S, Berneschi S, Barucci A, Cosci A, Farnesi D, Nunzi Conti G, Pelli S, Righini G, In Glass Micro- and Nanospheres: Physics and Applications, edited by Righini G (Jenny Stanford Publishing, 2019), p. 165. [CrossRef] [Google Scholar]
  63. Pastells C, Marco P, Merino D, Loza-Alvarez P, Quercioli F, Pasquardini L, Lunelli L, Pederzolli C, Daldoso N, Farnesi D, Berneschi S, Righini GC, Nunzi Conti G, Soria S, Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators, J. Lumin. 170, 860 (2016). https://doi.org/10.1016/j.jlumin.2015.07.013. [Google Scholar]
  64. Wang Y, Lang M, Lu J, Suo M, Du M, Hou Y, Wang X, Wang P, Demonstration of intracellular real-time molecular quantification via fret-enhanced optical microcavity, Nat Commun. 13, 6685 (2022). https://doi.org/10.1038/s41467-022-34547-4. [Google Scholar]
  65. Liu W, Chen YL, Tang S, Vollmer F, Xiao Y, Nonlinear sensing with whispering-gallery mode microcavities: from label-free detection to spectral fingerprinting, Nano Lett. 21, 1566 (2021). https://doi.org/10.1021/acs.nanolett.0c04090. [Google Scholar]
  66. Foreman MR, Jin WL, Vollmer F, Optimizing detection limits in whispering gallery mode biosensing, Opt. Express 22, 5491 (2014). https://doi.org/10.1364/OE.22.005491. [Google Scholar]
  67. Heylman KD, Thakkar N, Horak EH, Quillin SC, Cherqui C, Knapper KA, Masiello DJ, Goldsmith RH, Optical microresonators as single-particle absorption spectrometers, Nat. Photonics 10, 788 (2016). https://doi.org/10.1038/nphoton.2016.217. [Google Scholar]
  68. Sun Y, Shopova S, Frye-Mason G, Fan X, Rapid chemical-vapor sensing using optofluidic ring resonators, Opt. Lett. 33, 788 (2008). https://doi.org/10.1364/OL.33.000788. [Google Scholar]
  69. Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F, Whispering gallery mode carousel – a photonic mechanism for enhanced nanoparticle detection in biosensing, Opt. Express 17, 6230 (2009). https://doi.org/10.1364/OE.17.006230. [Google Scholar]
  70. Braginsky V, Manukin A, Tikhonov M, Investigation of dissipative ponderomotove effects of electromagnetic radiation, Sov. Phys. JETP 31, 829 (1970). [Google Scholar]
  71. Li B-B, Ou L, Lei Y, Liu Y-C, Cavity optomechanical sensing, Nanophotonics 10, 2799 (2021). https://doi.org/10.1515/nanoph-2021-0256. [Google Scholar]
  72. Yu W, Jiang W, Lin Q, Lu T, Cavity optomechanical spring sensing of single molecules, Nat. Commun. 7, 12311 (2016). https://doi.org/10.1038/ncomms12311. [Google Scholar]
  73. Tomes M, Carmon T, Photonic micro-electromechanical systems vibrating at X-band (11 ghz) rates, Phys. Rev. Lett 102, 113601 (2009). https://doi.org/10.1103/PhysRevLett.102.113601. [Google Scholar]
  74. Yang J, Qin T, Zhang F, Jiang XCX, Wan W, Multiphysical sensing of light, sound and microwave in a microcavity brillouin laser, Nanophotonics 9, 2915 (2020). https://doi.org/10.1515/nanoph-2020-0176. [Google Scholar]
  75. Giorgini A, Avino S, Malara P, Natale PD, Yannai M, Carmon T, Gagliardi G, Stimulated brillouin cavity optomechanics in liquid droplets, Phys. Rev. Lett. 120, 073902 (2018). https://doi.org/10.1103/PhysRevLett.120.073902. [Google Scholar]
  76. Giorgini A, Avino S, Malara P, Natale PD, Gagliardi G, Opto-mechanical oscillator in a nanoliter droplet, Opt. Lett. 43, 3473 (2018). https://doi.org/10.1364/OL.43.003473. [Google Scholar]
  77. Li J-J, Zhu K-D, Nonlinear optical mass sensor with an optomechanical microresonator, Appl. Phys. Lett. 101, 141905 (2012). https://doi.org/10.1063/1.4757004. [Google Scholar]
  78. Monifi F, Bo BP, Özdemir ŞK, Ma L, Maslov K, Wang LV, Yang L, in 2013 IEEE Photonics Conference, (IEEE, 2013), p. 215. https://doi.org/10.1109/IPCon.2013.6656511. [Google Scholar]
  79. Chistiakova MV, Armani AM, Photoelastic ultrasound detection using ultra-high-q silica optical resonators, Opt. Express 22, 28169 (2014). https://doi.org/10.1364/OE.22.028169. [Google Scholar]
  80. Kim K, Luo W, Zhang C, Tian C, Guo LJ, Wang X, Fan X, Air-coupled ultrasound detection using capillary-based optical ring resonators, Sci. Rep. 7, 109 (2017). https://doi.org/10.1038/s41598-017-00134-7. [Google Scholar]
  81. Griffel G, Arnold S, Taskent D, Serpenguzel A, Connolly J, Morris N, Morphology-dependent resonances of a microsphere-optical fiber system, Opt. Lett. 21, 695 (1996). https://doi.org/10.1364/OL.21.000695. [Google Scholar]
  82. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F, Shift of whispering gallery modes in microspheres by protein adsorption, Opt. Lett. 28, 272 (2003). https://doi.org/10.1364/OL.28.000272. [Google Scholar]
  83. Hanumegowda NM, Stica CJ, Patel BC, White IM, Fan X, Refractometric sensors based on microsphere resonators, Appl. Phys. Lett. 87, 201107 (2005). https://doi.org/10.1063/1.2132076. [Google Scholar]
  84. Armani A, Vahala KJ, Heavy water detection using ultra-high-q microcavities, Opt. Lett. 31, 896 (2006). https://doi.org/10.1364/OL.31.001896. [Google Scholar]
  85. Zamora V, Díez A, Andrés MV, Gimeno B, Refractometric sensor based on whispering gallery modes of thin capillaries, Opt. Express 15, 12011 (2007). https://doi.org/10.1364/OE.15.012011. [Google Scholar]
  86. Sumetsky M, Windeler RS, Dulashko Y, Fan X, Optical liquid ring resonator sensor, Optics Express 15, 14376 (2007). https://doi.org/10.1364/OE.15.014376. [Google Scholar]
  87. Sedlmeir F, Zeltner R, Leuchs G, Schwefel HG, High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment, Opt. Express 22, 30934 (2014). https://doi.org/10.1364/OE.22.030934. [Google Scholar]
  88. Soria S, Berneschi S, Brenci M, Cosi F, Nunzi Conti G, Pelli S, Righini GC, Optical microspherical resonators for biomedical sensing, Sensors 11, 785 (2011). https://doi.org/10.3390/s110100785. [Google Scholar]
  89. Foreman MR, Swaim JD, Vollmer F, Whispering gallery mode sensors, Adv. Opt. Photonics 7, 168 (2015). https://doi.org/10.1364/AOP.7.000168. [Google Scholar]
  90. Cai L, Pan J, Zhao Y, Wang J, Xiao S, Whispering gallery mode optical microresonators: Structures and sensing applications, Phys. Status Solidi A 217, 1900825 (2020). https://doi.org/10.1002/pssa.201900825. [Google Scholar]
  91. Pasquardini L, Berneschi S, Barucci A, Cosi F, Dallpiccola R, Lunelli L, Nunzi Conti L, Pederzolli C, Soria S, Whispering gallery modes aptasensors for detection of blood proteins, J. Biophotonics 6, 785 (2013). https://doi.org/10.1002/jbio.201200013. [Google Scholar]
  92. Ren H-C, Vollmer F, Arnold S, Libchaber A, High-Q microsphere biosensor – analysis for adsorption of rodlike bacteria, Opt. Express 15, 17410 (2007). https://doi.org/10.1364/OE.15.017410. [Google Scholar]
  93. Arnold S, Ramjit R, Keng D, Kolchenko V, Teraoka I, Microparticle photophysics illuminates viral bio-sensing, Faraday Discuss. 137, 65 (2008). https://doi.org/10.1039/B702920A. [Google Scholar]
  94. Vollmer F, Arnold S, Keng D, Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA 105, 20701 (2008). https://doi.org/10.1073/pnas.0808988106. [Google Scholar]
  95. Noto M, Keng D, Teraoka I, Arnold S, Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes, Biophys. J. 92, 4466 (2007). https://doi.org/10.1529/biophysj.106.103200. [Google Scholar]
  96. Topolancik J, Vollmer F, Photoinduced transformations in bacteriorhodopsin membrane with optical microcavities, Biophys. J. 92, 2223 (2007). https://doi.org/10.1529/biophysj.106.098806. [Google Scholar]
  97. Giannetti A, Berneschi S, Baldini F, Cosi F, Nunzi Conti G, Soria S, Performance of eudragit coated whispering gallery mode resonator-based immunosensors, Sensors 12, 14604 (2012). https://doi.org/10.3390/s121114604. [Google Scholar]
  98. Zhu H, Suter JD, White IM, Fan X, Aptamer based microsphere biosensor for thrombin detection, Sensors 6, 785 (2006). https://doi.org/10.3390/s6080785. [Google Scholar]
  99. Berneschi S, Baldini F, Cosci A, Cosi F, Farnesi D, Nunzi Conti G, Tombelli S, Trono C, Pelli S, Giannetti A, Fluorescence biosensing in selectively photo-activated microbubble resonators, Sens. Actuators B Chem. 242, 1057 (2017). https://doi.org/10.1016/j.snb.2016.09.146. [Google Scholar]
  100. Berneschi S, Baldini F, Barucci A, Cosci A, Cosi F, Farnesi D, Nunzi Conti G, Righini GC, Soria S, Tombelli S, Trono C, Pelli S, Giannetti A, Localized biomolecules immobilization in optical microbubble resonators, Proc. SPIE 9727, 972719 (2016). https://doi.org/10.1117/12.2213683. [Google Scholar]
  101. Dantham VR, Holler S, Kolchenko V, Wan Z, Arnold S, Taking whispering gallery-mode single virus detection and sizing to the limit, Appl. Phys. Lett 101, 043704 (2012). https://doi.org/10.1063/1.4739473. [Google Scholar]
  102. Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S, Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity, Nano Lett. 13, 3347 (2013). https://doi.org/10.1021/nl401633y. [Google Scholar]
  103. Subramanian S, Jones HB, Frustaci S, Winter S, van der Kamp MW, Arcus VL, Pudney CR, Vollmer F, Sensing enzyme activation heat capacity at the single-molecule level using gold-nanorod-based optical whispering gallery modes, ACS Appl. Nano Mater. 4, 4576 (2021). https://doi.org/10.1021/acsanm.1c00176. [Google Scholar]
  104. Toropov NA, Houghton MC, Yu D, Vollmer F, Thermo-optoplasmonic single-molecule sensing on optical microcavities, ACS Nano 18, 17534 (2024). https://doi.org/10.1021/acsnano.4c00877. [Google Scholar]
  105. Houghton MC, Toropov NA, Yu D, Bagby S, Vollmer F, Single molecule thermodynamic penalties applied to enzymes by whispering gallery mode biosensors, Adv. Sci. 11, 2403195 (2024). https://doi.org/10.1002/advs.202403195. [Google Scholar]
  106. Ghamari S, Chiarelli G, Kolataj K, Subramanian S, Acuna GP, Vollmer F, Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor, Nanophotonics 14, 253 (2025). https://doi.org/10.1515/nanoph-2024-0560. [Google Scholar]
  107. Yu X, Tang S-J, Liu W, Xu Y, Gong Q, Chen Y-L, Xiao Y-F, Single-molecule optofluidic microsensor with interface whispering gallery modes, Proc. Natl. Acad. Sci. USA 6, 119 (2022). https://doi.org/10.1073/pnas.2108678119. [Google Scholar]
  108. Ioppolo T, Otugen MV, Pressure tuning of whispering gallery mode resonators, J. Opt. Soc. Am. B 24, 2721 (2007). https://doi.org/10.1364/JOSAB.24.002721. [Google Scholar]
  109. Ioppolo T, Kozhevnikov M, Stepaniuk V, Otugen M, Sheverev V, Micro-optical force sensor concept based on whispering gallery mode resonators, Appl. Opt. 47, 3009 (2008). https://doi.org/10.1364/AO.47.003009. [Google Scholar]
  110. Sumetsky M, Dulashko Y, Windeler RS, Super free spectral range tunable optical microbubble resonator, Opt. Lett 35, 1866 (2010). https://doi.org/10.1364/OL.35.001866. [Google Scholar]
  111. Henze R, Seifert T, Ward J, Benson O, Tuning whispering gallery modes using internal aerostatic pressure, Opt. Lett. 36, 4536 (2011). https://doi.org/10.1364/OL.36.004536. [Google Scholar]
  112. Yang Y, Ward J, Chormaic SN, Quasi-droplet microbubbles for high resolution sensing applications, Opt. Express 22, 6881 (2014). https://doi.org/10.1364/OE.22.006881. [Google Scholar]
  113. Lu Q, Liao J, Liu S, Wu X, Liying Liu ALX, Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing, Opt. Express 24, 20855 (2016). https://doi.org/10.1364/OE.24.020855. [Google Scholar]
  114. Aymerich M, Frigenti G, Farnesi D, Cosci A, Cerminara M, Pelli S, Righini GC, Nunzi Conti G, Flores-Arias MT, Soria S, in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) (OSA Technical Digest, 2018), p. SeW2E.6. https://doi.org/10.1364/SENSORS.2018.SeW2E.6. [CrossRef] [Google Scholar]
  115. Ward J, Dhasmana N, Chormaic SN, Hollow core, whispering gallery resonator sensors, Eur. Phys. J. Spec. Top. 223, 1917 (2014). https://doi.org/10.1140/epjst/e2014-02236-5. [Google Scholar]
  116. Arnold S, Shopova S, Holler S, Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism, Opt. Express 18, 281 (2010). https://doi.org/10.1364/OE.18.000281. [Google Scholar]
  117. Guan G, Arnold S, Ötügen MV, Temperature measurements using a microoptical sensor based on whispering gallery modes, AIAA J. 44, 2385 (2006). https://doi.org/10.2514/1.20910. [Google Scholar]
  118. Brenci M, Calzolai M, Cosi F, Nunzi Conti G, Pelli S, Righini G, Microspherical resonators for biophotonic sensors, Proc. SPIE 6158, 61580S (2006). https://doi.org/10.1117/12.675800. [Google Scholar]
  119. Cosci A, Cerminara M, Nunzi Conti G, Soria S, Righini G, Pelli S, THZ pyro-optical detector based on linbo3 whispering gallery mode microdisc resonato, Sensors 17, 258 (2017). https://doi.org/10.3390/s17020258. [Google Scholar]
  120. D’Ambrosio D, Capezzuto M, Aiello R, Santi MGD, Sorgi A, Malara P, Avino S, Giorgini A, Maddaloni P, Consolino L, Vitiello MS, Natale PD, Gagliardi G, Infrared-to-THZ detection and spectroscopy with whispering-gallery-mode microresonators, Adv. Photonics Res. 3, 2200147 (2022). https://doi.org/10.1002/adpr.202200147. [Google Scholar]
  121. Dong CH, He L, Xiao Y-F, Gaddam VR, Özdemir ŞK, Han Z-F, Guo G-C, Yang L, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing, Appl. Phys. Lett. 94, 231119 (2009). https://doi.org/10.1063/1.3152791. [Google Scholar]
  122. Mehrabani S, Kwong P, Gupta M, Armani AM, Hybrid microcavity humidity sensor, Appl. Phys. Lett. 102, 241101 (2013). https://doi.org/10.1063/1.4811265. [Google Scholar]
  123. Petermann AB, Varkentin A, Roth B, Morgner U, Meinhardt-Wollweber M, All-polymer whispering gallery mode sensor system, Opt. Express 24, 6052 (2016). https://doi.org/10.1364/OE.24.006052. [Google Scholar]
  124. Xu L, Jiang X, Zhao G, Ma D, Tao H, Liu Z, Omenetto FG, Yang L, High-Q silk fibroin whispering gallery microresonator, Opt. Express 24, 20825 (2016). https://doi.org/10.1364/OE.24.020825. [Google Scholar]
  125. Gu G, Jiang J, Wang S, Liu K, Zhang Y, Ding Z, Highly sensitive temperature sensor based on hollow microsphere for ocean application, IEEE Photonics J. 11, 6803508 (2019). https://doi.org/10.1109/JPHOT.2019.2950028. [Google Scholar]
  126. Tang T, Wu X, Liu L, Xu L, Packaged optofluidic microbubble resonators for optical sensing, Appl. Opt. 55, 395 (2016). https://doi.org/10.1364/AO.55.000395. [Google Scholar]
  127. Yan Y-Z, Zou C-L, Yan S-B, Sun F-W, Ji Z, Liu J, Zhang Y-G, Wang L, Xue C-Y, Zhang W-D, Han Z-F, Xiong J-J, Packaged silica microsphere-taper coupling system for robust termal sensing applications, Opt. Express 19, 5753 (2011). https://doi.org/10.1364/OE.19.005753. [Google Scholar]
  128. Cosci A, Berneschi S, Giannetti A, Farnesi D, Cosi F, Baldini F, Gualtiero N, Soria S, Barucci A, Righini G, Pelli S, Resonance frequency of optical microbubble resonators: direct measurements and mitigation of fluctuations, Sensors 16, 1405 (2016). https://doi.org/10.3390/s16091405. [Google Scholar]
  129. Zhu J, Özdemir ŞK, He L, Chen D-R, Yang L, Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities, Opt. Express 19, 16195 (2011). https://doi.org/10.1364/OE.19.016195. [Google Scholar]
  130. Li M, Wu X, Liu L, Fan X, Xu L, Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection, Anal. Chem. 85, 9328 (2013). https://doi.org/10.1021/ac402174x. [Google Scholar]
  131. Lopez JR, Treasurer E, Snyder KM, Keng D, Arnold S, Whispering gallery mode coulometry of the nanoparticle-microcavity interaction in aqueous solution, Appl. Phys. Lett. 112, 051109 (2018). https://doi.org/10.1063/1.5017041. [Google Scholar]
  132. Wang Z, Fang G, Gao Z, Liao Y, Gong C, Kim M, Chang G, Feng S, Xu T, Liu T, Chen Y, Autonomous microlasers for profiling extracellular vesicles from cancer spheroids, Nano Lett. 23, 2502 (2023). https://doi.org/10.1021/acs.nanolett.2c04123. [Google Scholar]
  133. Yang J, Guo L, Optical sensors based on active microcavities, IEEE J. Sel. Top. Quantum Electron. 12, 143 (2006). https://doi.org/10.1109/JSTQE.2005.862953. [Google Scholar]
  134. Pang S, Beckham R, Meissner KE, Quantum dot-embedded microspheres for remote refractive index sensing, Appl. Phys. Lett. 92, 221108 (2008). https://doi.org/10.1063/1.2937209. [Google Scholar]
  135. Himmelhaus M, François A, Whispering gallery mode biosensor operated in the stimulated emission regime, Appl. Phys. Lett. 94, 031101 (2009). https://doi.org/10.1063/1.3059573. [Google Scholar]
  136. Beier H, Cote G, Meissner K, Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres, Ann. Biomed. Eng. 37, 1974 (2009). https://doi.org/10.1007/s10439-009-9713-2. [Google Scholar]
  137. Humar M, Yun SH, Intracellular microlasers, Nat. Photonics 9, 572 (2015). https://doi.org/10.1038/NPHOTON.2015.129. [CrossRef] [PubMed] [Google Scholar]
  138. Himmelhaus M, François A, In vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor, Biosens. Bioelectron 25, 418 (2009). https://doi.org/10.1016/j.bios.2009.07.021. [Google Scholar]
  139. Martino N, Kwok SJJ, Liapis AC, Forward S, Jang H, Kim HM, Wu SJ, Wu J, Dannenberg PH, Jang SJ, Lee YH, Yun SH, Wavelength-encoded laser particles for massively multiplexed cell tagging, Nat. Photonics 13, 720 (2019). https://doi.org/10.1038/s41566-019-0489-0. [Google Scholar]
  140. Tang S-J, Dannenberg PH, Liapis AC, Martino N, Zhuo Y, Xiao Y-F, Yun S-H, Laser particles with omnidirectional emission for cell tracking, Light Sci. Appl. 10, 23 (2021). https://doi.org/10.1038/s41377-021-00466-0. [Google Scholar]
  141. Schubert M, Woolfson L, Barnard IRM, Dorward AM, Casement B, Morton A, Robertson GB, Appleton PL, Miles GB, Tucker CS, Pitt SJ, Gather MC, Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers, Nat. Photonics 14, 452 (2020). https://doi.org/10.1038/s41566-020-0631-z. [CrossRef] [Google Scholar]
  142. Titze VM, Caixeiro S, Dinh VS, König M, Rübsam M, Pathak N, Schumacher A-L, Germer M, Kukat C, Niessen CM, Schubert M, Gather MC, Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers, Nat. Protoc. 19, 928 (2024). https://doi.org/10.1038/s41596-023-00924-6. [Google Scholar]
  143. Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L, Monifi F, Huang S, Long G, Yang L, Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser, Proc. Natl. Acad. Sci. USA 111, e3836 (2014). https://doi.org/10.1073/pnas.140828311. [Google Scholar]
  144. Li B-B, Clements W, Yu X-C, Shi K, Gong Q, Xiao Y-F, Single nanoparticle detection using split-mode microcavity raman lasers, Proc. Natl. Acad. Sci. USA 111, 14657 (2014). https://doi.org/10.1073/pnas.1408453111. [Google Scholar]
  145. Suh M-G, Yang Q-F, Yang K, Yi X, Vahala K, Microresonator soliton dual-comb spectroscopy, Science 354, 600 (2016). https://doi.org/10.1126/science.aah6516. [Google Scholar]
  146. Tan T, Yuan Z, Zhang H, Yan G, Zhou S, An N, Peng B, Soavi G, Rao Y, Yao B, Multispecies and individual gas molecule detection using stokes solitons in a graphene over-modal microresonator, Nat. Commun. 12, 6716 (2021). https://doi.org/10.1038/s41467-021-26740-8. [Google Scholar]
  147. Sun J, Tang S-J, Meng J-W, Li C, Whispering-gallery optical microprobe for photoacoustic imaging, Photonics Res. 11, A65 (2023). https://doi.org/10.1364/PRJ.495267. [Google Scholar]
  148. D’Ambrosio D, Capezzuto M, Avino S, Malara P, Giorgini A, Natale PD, Gagliardi G, Light pressure in droplet micro-resonators excited by free-space scattering, Opt. Lett. 46, 3111 (2021). https://doi.org/10.1364/OL.427260. [Google Scholar]
  149. Kippenberg T, Rokhsari H, Carmon T, Scherer A, Vahala KJ, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett. 95, 033901 (2005). https://doi.org/10.1103/PhysRevLett.95.033901. [Google Scholar]
  150. Schliesser A, Anetsberger G, Rivière R, Arcizet O, Kippenberg TJ, High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators, New J. Phys. 10, 095015 (2008). https://doi.org/10.1088/1367-2630/10/9/095015. [Google Scholar]
  151. Basiri-Esfahani S, Armin A, Forstner S, Bowen WP, Precision ultrasound sensing on a chip, Nat. Commun. 10, 132 (2019). https://doi.org/10.1038/s41467-018-08038-4. [Google Scholar]
  152. Anetsberger G, Rivière R, Schliesser A, Arcizet O, Kippenberg TJ, Ultralow-dissipation optomechanical resonators on a chip, Nat. Photon 2, 627 (2008). https://doi.org/10.1038/nphoton.2008.199. [Google Scholar]
  153. Yang H, Cao X, Hu Z-G, Gao Y, Lei Y, Wang M, Zuo Z, Xu X, Li B-B, Micropascal-sensitivity ultrasound sensors based on optical microcavities, Photon. Res. 11, 1139 (2023). https://doi.org/10.1364/PRJ.486849. [Google Scholar]
  154. Gil-Santos E, Ruz J, Malvar O, Favero I, Lemaître A, Kosaka P, Lopez SG, Calleja M, Tamayo J, Optomechanical detection of vibration modes of a single bacterium, Nat Nanotechnol. 15, 469 (2020). https://doi.org/10.1038/s41565-020-0672-y. [Google Scholar]
  155. Sentre-Arribas E, Aparicio-Millán A, Lemaître A, Favero I, Tamayo J, Calleja M, Gil-Santos E, Simultaneous optical and mechanical sensing based on optomechanical resonators, ACS Sens. 9, 371 (2024). https://doi.org/10.1021/acssensors.3c02103. [Google Scholar]
  156. Forstner S, Prams S, Knittel J, van Ooijen ED, Swaim J, Harris G, Szorkovszky A, Bowen W, Rubinsztein-Dunlop H, Cavity optomechanical magnetometer, Phys. Rev. Lett. 108, 120801 (2012). https://doi.org/10.1103/PhysRevLett.108.120801. [Google Scholar]
  157. Forstner S, Sheridan E, Knittel J, Humphreys C, Brawley G, Rubinsztein-Dunlop H, Bowen W, Ultrasensitive optomechanical magnetometry, Adv. Mater. 26, 6348 (2014). https://doi.org/10.1002/adma.201401144. [Google Scholar]
  158. Li B-B, Bulla D, Prakash V, Forstner S, Dehghan-Manshadi A, Rubinsztein-Dunlop H, Foster S, Bowen WP, Invited article: scalable high-sensitivity optomechanical magnetometers on a chip, APL Photonics 3, 120806 (2018). https://doi.org/10.1063/1.5055029. [Google Scholar]
  159. Li B-B, Brawley G, Greenall H, Forstner S, Sheridan E, Rubinsztein-Dunlop H, Bowen WP, Ultrabroadband and sensitive cavity optomechanical magnetometry, Photon. Res. 8, 1064 (2020). https://doi.org/10.1364/PRJ.390261. [Google Scholar]
  160. Zhu J, Zhao G, Savukov I, Yang L, Polymer encapsulated microcavity optomechanical magnetometer, Sci. Rep. 7, 8896 (2017). https://doi.org/10.1038/s41598-017-08875-1. [Google Scholar]
  161. Yu C, Janousek J, Sheridan E, McAuslan DL, Rubinsztein-Dunlop H, Lam PK, Zhang Y, Bowen WP, Optomechanical magnetometry with a macroscopic resonator, Phys. Rev. Appl. 5, 044007 (2016). https://doi.org/10.1103/PhysRevApplied.5.044007. [Google Scholar]
  162. Freeman E, Wang C-Y, Sumaria V, Zhang C, Cocking A, Liu Z, Tadigadapa Sin: 2017 IEEE Sensors (IEEE, 2017), p. 1. https://doi.org/10.1109/ICSENS.2017.8233893. [Google Scholar]
  163. Bahl G, Kim K, Lee W, Liu J, Fan X, Carmon T, Brillouin cavity optomechanics with microfluid devices, Nat. Commun. 4, 1994 (2013). https://doi.org/10.1038/ncomms2994. [Google Scholar]
  164. Han K, Zhu K, Bahl G, Opto-mechano-fluidic viscometer, Appl. Phys. Lett. 105, 014103 (2014). https://doi.org/10.1063/1.4887369. [Google Scholar]
  165. Tu X, Wang Y, Guo Z, Chen Z, Huang T, Wu X, Luoi W, Underwater acoustic wave detection based on packaged optical microbubble resonator, J. Lightwave Technol. 40, 6272 (2022). https://doi.org/10.1109/JLT.2022.3187960. [Google Scholar]
  166. Frigenti G, Cavigli L, Fernández-Bienes A, Ratto F, Centi S, García-Fernández T, Nunzi Conti G, Soria S, Microbubble resonators for all-optical photoacoustics of flowing contrast agents, Sensors 20, 1696 (2020). https://doi.org/10.3390/s20061696. [CrossRef] [PubMed] [Google Scholar]
  167. Han K, Kim J, Bahl G, High-throughput sensing of freely flowing particles with optomechanofluidics, Optica 3, 585 (2016). https://doi.org/10.1364/OPTICA.3.000585. [Google Scholar]
  168. Ward JM, Yang Y, Lei F, Yu X-C, Xiao Y-F, Chormaic SN, Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity, Optica 5, 674 (2018). https://doi.org/10.1364/OPTICA.5.000674. [Google Scholar]
  169. Knittel J, McRae TG, Lee KH, Bowen WP, Interferometric detection of mode splitting for whispering gallery mode biosensors, Appl. Phys. Lett. 97, 123704 (2010). https://doi.org/10.1063/1.3494530. [Google Scholar]
  170. Shopova SI, Rajmangal R, Nishida Y, Arnold S, Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser, Rev. Sci. Instrum. 81, 103110 (2010). https://doi.org/10.1063/1.3499261. [Google Scholar]
  171. Chen W, Zhu J, Özdemir SK, Peng B, Yang L, A simple method for characterizing and engineering thermal relaxation of an optical microcavity, Appl. Phys. Lett. 109, 061103 (2016). https://doi.org/10.1063/1.4960665. [Google Scholar]
  172. He L, Xiao F, Dong C, Zhu J, Gaddam V, Yang L, Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating, Appl.Phys. Lett. 93, 201102 (2008). https://doi.org/10.1063/1.3030986. [Google Scholar]
  173. He L, Xiao Y-F, Zhu J, Özdemir ŞK, Yang L, Oscillatory thermal dynamics in high-Q PDMS coated silica toroidal microresonators, Opt. Express 17, 9571 (2009). https://doi.org/10.1364/oe.17.009571. [Google Scholar]
  174. Heylman KD, Knapper KA, Goldsmith RH, Photothermal microscopy of nonluminescent single particles enabled by optical microresonators, J. Phys. Chem. Lett. 5, 1917 (2014). https://doi.org/10.1021/jz500781g. [Google Scholar]
  175. Horak EH, Rea MT, Heylman KD, Gelbwaser-Klimovsky D, Saikin SK, Thompson BJ, Kohler DD, Knapper KA, Wei W, Pan F, Gopalan P, Wright JC, Aspuru-Guzik A, Goldsmith RH, Exploring electronic structure and order in polymers via single-particle microresonator spectroscopy, Nano Lett. 5, 1600 (2018). https://doi.org/10.1021/acs.nanolett.7b04211. [Google Scholar]
  176. Berneschi S, Bettazzi F, Giannetti A, Baldini F, Nunzi Conti G, Pelli S, Palchetti I, Optical whispering gallery mode resonators for label-free detection of water contaminants, Trends Anal. Chem. 126, 115856 (2020). https://doi.org/10.1016/j.trac.2020.115856. [Google Scholar]
  177. Hogan LT, Horak EH, Ward JM, Knapper KA, Chormaic SN, Goldsmith RH, Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer, ACS Nanos 13, 12743 (2019). https://doi.org/10.1021/acsnano.9b04702. [Google Scholar]
  178. Frigenti G, Cavigli L, Ratto F, Centi S, Murzina TV, Farnesi D, Pelli S, Soria S, Nunzi Conti G, Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles, Opt. Express 29, 31130 (2021). https://doi.org/10.1364/OE.434868. [Google Scholar]
  179. Frigenti G, Farnesi D, Vesco G, Centi S, Ratto F, Pelli S, Murzina T, Nunzi Conti G, Soria S, Thermometric absorption spectroscopy through active locking of microbubble resonators, Front. Phys. 11, 1226106 (2023). https://doi.org/10.3389/fphy.2023.1226106. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.