Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 9
Number of page(s) 10
DOI https://doi.org/10.1051/jeos/2025004
Published online 14 February 2025
  1. Kennedy BF, Wijesinghe P, Sampson DD, The emergence of optical elastography in biomedicine, Nat. Photonics 11, 4 (2017). https://doi.org/10.1038/nphoton.2017.6. [Google Scholar]
  2. Koukourakis N, et al. Investigation of human organoid retina with digital holographic transmission matrix measurements, Light Adv. Manuf. 3, 2 (2022). https://doi.org/10.37188/lam.2022.023. [Google Scholar]
  3. Leartprapun N, Adie SG, Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited], Biomed. Opt. Express 14, 1 (2022). https://doi.org/10.1364/boe.468932. [Google Scholar]
  4. Correas JM, et al. Ultrasound elastography of the prostate: State of the art, Diagn. Interv. Imaging 94, 5 (2013). https://doi.org/10.1016/j.diii.2013.01.017. [Google Scholar]
  5. Pallwein L, et al. Prostate cancer diagnosis: value of real-time elastography, Abdom. Imaging 33, 6 (2008). https://doi.org/10.1007/s00261-007-9345-7. [Google Scholar]
  6. Jaffer OS, et al. Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques, Ultrasound 20, 1 (2012). https://doi.org/10.1258/ult.2011.011043. [Google Scholar]
  7. Itoh A, et al. Breast disease: clinical application of US, Radiology 239, 2 (2006). https://doi.org/10.1148/radiol.2391041676. [Google Scholar]
  8. Sigrist RMS, et al. Ultrasound elastography: review of techniques and clinical applications, Theranostics 7, 5 (2017). https://doi.org/10.7150/thno.18650. [Google Scholar]
  9. Gautier HOB, et al. Atomic force microscopy-based force measurements on animal cells and tissues, Methods Cell Biol. 125, 211 (2015).https://doi.org/10.1016/bs.mcb.2014.10.005. [Google Scholar]
  10. Antonacci G, et al. Recent progress and current opinions in Brillouin microscopy for life science applications, Biophys. Rev. 12, 3 (2020). https://doi.org/10.1007/s12551-020-00701-9. [Google Scholar]
  11. Raimund S, et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging, Biophys. J. 115, 5 (2018). https://doi.org/10.1016/j.bpj.2018.07.027. [Google Scholar]
  12. Czarske J, Heterodyne detection technique using stimulated Brillouin scattering and a multimode laser, Opt. Lett. 19, 19 (1994). https://doi.org/10.1364/ol.19.001589. [NASA ADS] [CrossRef] [Google Scholar]
  13. Coker ZN, et al. Brillouin microscopy monitors rapid responses in subcellular compartments, PhotoniX 5, 1 (2024). https://doi.org/10.1186/s43074-024-00123-w. [CrossRef] [Google Scholar]
  14. Moeckel C, et al. Estimation of the mass density of biological matter from refractive index measurements, bioRxiv (2023). https://doi.org/10.1101/2023.12.05.569868. [Google Scholar]
  15. Pruidze P, et al. Brillouin scattering spectroscopy for studying human anatomy: Towards in situ mechanical characterization of soft tissue, J. Eur. Opt. Soc., Rapid Publ. 19, 31 (2023). https://doi.org/10.1051/jeos/2023028. [CrossRef] [EDP Sciences] [Google Scholar]
  16. Dil JG, Brillouin scattering in condensed matter, Rep. Prog. Phys. 45, 3 (1982). https://doi.org/10.1088/0034-4885/45/3/002. [Google Scholar]
  17. Hua Z, et al. Non-destructive and distributed measurement of optical fiber diameter with nanometer resolution based on coherent forward stimulated Brillouin scattering, Light Adv. Manuf. 2, 4 (2021). https://doi.org/10.37188/lam.2021.025. [Google Scholar]
  18. Alunni Cardinali M, et al. Brillouin scattering from biomedical samples: the challenge of heterogeneity, J. Phys. Photon. 6, 035009 (2024). https://doi.org/10.1088/2515-7647/ad4cc7. [NASA ADS] [CrossRef] [Google Scholar]
  19. Zhang J, et al. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy, Nat. Methods 20, 677 (2023). https://doi.org/10.1038/s41592-023-01816-z. [CrossRef] [Google Scholar]
  20. Bevilacqua C, et al. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development, Nat. Methods 20, 755 (2023). https://doi.org/10.1038/s41592-023-01822-1. [CrossRef] [Google Scholar]
  21. Remer I, Bilenca A, Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering, Opt. Lett. 41, 5 (2016). https://doi.org/10.1364/ol.41.000926. [NASA ADS] [CrossRef] [Google Scholar]
  22. Remer I, et al. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy, Nat. Methods 17, 9 (2020). https://doi.org/10.1038/s41592-020-0882-0. [Google Scholar]
  23. Yang F, et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens, Nat. Methods 1, 9 (2023). https://doi.org/10.1038/s41592-023-02054-z. [Google Scholar]
  24. Ballmann CW, et al. Stimulated Brillouin scattering microscopic imaging, Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep18139. [CrossRef] [Google Scholar]
  25. Li T, et al. Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging, Optica 9, 8 (2022). https://doi.org/10.1364/optica.467635. [Google Scholar]
  26. Ballmann CW, et al. Impulsive Brillouin microscopy, Optica 4, 124 (2017). https://doi.org/10.1364/OPTICA.4.000124. [NASA ADS] [CrossRef] [Google Scholar]
  27. Krug B, Koukourakis N, Czarske J, Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels, Opt. Express 27, 19 (2019). https://doi.org/10.1364/oe.27.026910. [NASA ADS] [CrossRef] [Google Scholar]
  28. Le T, et al. Speed of sound measurement and mapping in transparent materials by impulsive stimulated Brillouin microscopy, J. Phys. Photon. 6, 035004 (2024). https://doi.org/10.1088/2515-7647/ad46a8. [NASA ADS] [CrossRef] [Google Scholar]
  29. Li J, et al. High-speed impulsive stimulated Brillouin microscopy, Photon. Res. 12, 730 (2023). https://doi.org/10.1364/prj.509922. [Google Scholar]
  30. Meng Z, Petrov GI, Yakovlev VV, Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements, Analyst 140, 21 (2015). https://doi.org/10.1039/c5an01700a. [Google Scholar]
  31. Ballmann CW, Meng Z, Yakovlev VV, Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements, Biomed. Opt. Express 10, 4 (2019). https://doi.org/10.1364/boe.10.001750. [CrossRef] [Google Scholar]
  32. Schmieder F, et al. Tracking connectivity maps in human stem cell-derived neuronal networks by holographic optogenetics, Life Sci. Alliance 5, 7 (2022). https://doi.org/10.26508/lsa.202101268. [Google Scholar]
  33. Krug B, et al. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography, Opt. Express 30, 4748 (2022). https://doi.org/10.1364/OE.449980. [NASA ADS] [CrossRef] [Google Scholar]
  34. Fladung W, Rost R, Application and correction of the exponential window for frequency response functions, Mech. Syst. Signal Process. 11, 23 (1997). https://doi.org/10.1006/mssp.1996.0084. [NASA ADS] [CrossRef] [Google Scholar]
  35. Günther P, et al. Distance measurement technique using tilted interference fringe systems and receiving optic matching, Opt. Lett. 37, 22 (2012). https://doi.org/10.1364/ol.37.004702. [CrossRef] [Google Scholar]
  36. Schlamp S, et al. Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics, Appl. Opt. 39, 30 (2000). https://doi.org/10.1364/ao.39.005477. [CrossRef] [Google Scholar]
  37. Boyd RW, Nonlinear optics, 4th edn (Academic Press, 2020). https://doi.org/10.1016/C2015-0-05510-1. [Google Scholar]
  38. Maznev AA, Nelson KA, Rogers JA, Optical heterodyne detection of laser-induced gratings, Opt. Lett. 23, 16 (1998). https://doi.org/10.1364/ol.23.001319. [NASA ADS] [CrossRef] [Google Scholar]
  39. Prabhu KMM, Window functions and their applications in signal processing (Taylor & Francis, 2014). https://doi.org/10.1201/9781315216386. [Google Scholar]
  40. Li J, et al. Sensitive impulsive stimulated Brillouin spectroscopy by an adaptive noise-suppression Matrix Pencil, Opt. Express 30, 29598 (2022). https://doi.org/10.1364/OE.465106. [CrossRef] [Google Scholar]
  41. Czarske J, Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals, Meas. Sci. Technol. 12, 5 (2001). https://doi.org/10.1088/0957-0233/12/5/307. [Google Scholar]
  42. O’Connor SP, et al. Spectral resolution enhancement for impulsive stimulated Brillouin spectroscopy by expanding pump beam geometry, Opt. Express 31, 14604 (2023). https://doi.org/10.1364/OE.487131. [CrossRef] [Google Scholar]
  43. Zhu TC, Maris HJ, Tauc J, Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz, Phys. Rev. B 44, 9 (1991). https://doi.org/10.1103/physrevb.44.4281. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.