EOSAM 2024
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
Article Number 16
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2025011
Published online 08 April 2025
  1. Wang Z, et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope, Nat. Commun. 2, 218 (2011). https://doi.org/10.1038/ncomms1211. [NASA ADS] [CrossRef] [Google Scholar]
  2. Darafsheh A, Microsphere-assisted microscopy, J. Appl. Phys. 131, 031102 (2022). https://doi.org/10.1063/5.0068263. [NASA ADS] [CrossRef] [Google Scholar]
  3. Abbasian V, Pahl T, Hüser L, Lecler S, Montgomery P, Lehmann P, Darafsheh A, Microsphere-assisted quantitative phase microscopy: a review, Light Adv. Manuf. 5, 1 (2024). https://doi.org/10.37188/lam.2024.006. [Google Scholar]
  4. Darafsheh A, et al., Optical super-resolution by high-index liquid-immersed microspheres, Appl. Phys. Lett. 101, 141128 (2012). https://doi.org/10.1063/1.4757600. [NASA ADS] [CrossRef] [Google Scholar]
  5. Wang F, et al., Three-dimensional super-resolution morphology by near-field assisted white-light interferometry, Sci. Rep. 6, 24703 (2016). https://doi.org/10.1038/srep24703. [NASA ADS] [CrossRef] [Google Scholar]
  6. Upputuri PK, Pramanik M, Microsphere-aided optical microscopy and its applications for super-resolution imaging, Opt. Commun. 404, 32 (2017). https://doi.org/10.1016/j.optcom.2017.05.049. [Google Scholar]
  7. Montgomery P, et al., 3D nano surface profilometry by combining the photonic nanojet with interferometry, J. Phys. Conf. Ser. 794, 012006 (2017). https://doi.org/10.1088/1742-6596/794/1/012006. [NASA ADS] [CrossRef] [Google Scholar]
  8. Montgomery P, Perrin S, Lecler S, in 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, July 1–5 (2018). https://doi.org/10.1109/ICTON.2018.8473839. [Google Scholar]
  9. Kassamakov I, et al., 3D super-resolution optical profiling using microsphere enhanced mirau interferometry, Sci. Rep. 7, 3683 (2017). https://doi.org/10.1038/s41598-017-03830-6. [Google Scholar]
  10. Wang J, et al., Microsphere-assisted dark-field microscopy based on a fully immersed low refractive index microsphere, Opt. Lett. 48, 1858 (2023). https://doi.org/10.1364/OL.482922. [Google Scholar]
  11. Astratov VN, et al., Roadmap on label-free super-resolution imaging, Laser Photonics Rev. 17, 2200029 (2023). https://doi.org/10.1002/lpor.202200029. [NASA ADS] [CrossRef] [Google Scholar]
  12. Hüser L, Pahl T, Lehmann P, Experimental and numerical polarization analysis of the 3D transfer behavior in microsphere assisted interferometry for 1D phase gratings, J. Eur. Opt. Soc. Rapid Publ. 19, 32 (2023). https://doi.org/10.1051/jeos/2023029. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Yang H, et al., Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet, Nano Lett. 16, 4862 (2016). https://doi.org/10.1021/acs.nanolett.6b01255. [NASA ADS] [CrossRef] [Google Scholar]
  14. Perrin S, et al., Role of coherence in microsphere-assisted nanoscopy, Proc. Modeling Aspects in Optical Metrology VI, SPIE 10330, 103300V (2023). https://doi.org/10.1117/12.2270246. [Google Scholar]
  15. Boudoukha R, et al., Near-to far-field coupling of evanescent waves by glass microspheres, Photonics 8, 73 (2021). https://doi.org/10.3390/photonics8030073. [CrossRef] [Google Scholar]
  16. Darafsheh A, Abbasian V, Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture, Light Sci. Appl. 12, 22 (2023). https://doi.org/10.1038/s41377-022-01056-4. [NASA ADS] [CrossRef] [Google Scholar]
  17. Pahl T, et al., FEM-based modeling of microsphere-enhanced interferometry, Light Adv. Manuf. 3, 699 (2022). https://doi.org/10.37188/lam.2022.049. [Google Scholar]
  18. Zyla G, et al., 3D micro-devices for enhancing the lateral resolution in optical microscopy , Light Adv. Manuf. 5, 19 (2024). https://doi.org/10.37188/lam.2024.019. [Google Scholar]
  19. Hong Y, et al., Microsphere probe: combining microsphere-assisted microscopy with AFM, Opt. Express 31, 27520 (2023). https://doi.org/10.1364/OE.494572. [Google Scholar]
  20. Perrin S, et al., Miniaturized microsphere-assisted microscopy, Appl. Phys. Lett. 122, 161108 (2023). https://doi.org/10.1063/5.0135346. [NASA ADS] [Google Scholar]
  21. Trukhova A, et al., Microlens-assisted microscopy for biology and medicine, J. Biophotonics 15, e202200078 (2022). https://doi.org/10.1002/jbio.202200078. [CrossRef] [Google Scholar]
  22. Wilson T, Resolution and optical sectioning in the confocal microscope, J. Micros. 244, 113 (2011). https://doi.org/10.1111/j.1365-2818.2011.03549.x. [CrossRef] [Google Scholar]
  23. Allen KW, et al., Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis, Ann. Phys. 527, 513 (2015). https://doi.org/10.1002/andp.201500194. [NASA ADS] [Google Scholar]
  24. Darafsheh A, Comment on “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis” [Ann. Phys. (Berlin) 527, 513 (2015)], Ann. Phys. 528, 898 (2016). https://doi.org/10.1002/andp.201500359. [NASA ADS] [Google Scholar]
  25. Allen KW, Li Y, Astratov VN, Reply to “Comment on “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis” [Ann. Phys. (Berlin) 527, 513 (2015)]”, Ann. Phys. 528, 901 (2016). https://doi.org/10.1002/andp.201600211. [NASA ADS] [Google Scholar]
  26. Yan Y, et al., Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum, ACS Nano 8, 1809 (2014). https://doi.org/10.1021/nn406201q. [CrossRef] [PubMed] [Google Scholar]
  27. Pahl T, et al., Electromagnetic modeling of interference, confocal, and focus variation microscope, Adv. Photonics Nexus 3, 016013 (2024). https://doi.org/10.1117/1.APN.3.1.016013. [NASA ADS] [Google Scholar]
  28. Hüser L, et al., Microsphere-assistance in microscopic and confocal imaging, EPJ Web Conf. 309, 02014 (2024). https://doi.org/10.1051/epjconf/202430902014. [CrossRef] [EDP Sciences] [Google Scholar]
  29. Pahl T, et al., Modeling microcylinder-assisted conventional, interference and confocal microscopy, EPJ Web Conf. 309, 02015 (2024). https://doi.org/10.1051/epjconf/202430902015. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Hagemeier S, Ph.D. thesis, University of Kassel, 2022. [Google Scholar]
  31. Goodman J, Introduction to Fourier Optics, 2nd edn (McGraw-Hill Book Company, New York, 1996). [Google Scholar]
  32. Pahl T, et al., Rigorous 3D modeling of confocal microscopy on 2D surface topographies, Meas. Sci. Technol. 32, 094010 (2021). https://doi.org/10.1088/1361-6501/abfd69. [NASA ADS] [CrossRef] [Google Scholar]
  33. Hüser L, Lehmann P, Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements, Appl. Opt. 59, 1695 (2020). https://doi.org/10.1364/AO.379222. [CrossRef] [Google Scholar]
  34. Pahl T, et al., 3D modeling of coherence scanning interferometry on 2D surfaces using FEM, Opt. Express 28, 39807 (2020). https://doi.org/10.1364/OE.411167. [CrossRef] [Google Scholar]
  35. Huebner U, et al., A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques, Meas. Sci. Technol. 18, 422 (2007). https://doi.org/10.1088/0957-0233/18/2/S14. [NASA ADS] [CrossRef] [Google Scholar]
  36. Malitson IH, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205 (1965). https://doi.org/10.1364/JOSA.55.001205. [NASA ADS] [CrossRef] [Google Scholar]
  37. Schinke C, et al., Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon, AIP Adv. 5, 67168 (2015). https://doi.org/10.1063/1.4923379. [NASA ADS] [Google Scholar]
  38. Pahl T, et al., Simulative investigation of microcylinder-assisted microscopy in reflection and transmission mode, Proc, Modeling Aspects in Optical Metrology IX, SPIE 12619, 12619OK (2023). https://doi.org/10.1117/12.2673443. [NASA ADS] [Google Scholar]
  39. Maslov AV, Astratov VN, Origin of the super-resolution of microsphere-assisted imaging, Appl. Phys. Lett. 124, 061105 (2024). https://doi.org/10.1063/5.0188450. [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.