Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
EOSAM 2024
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/jeos/2025013 | |
Published online | 21 April 2025 |
- González AB, Pozo J, Optical beam shaping: unmet needs in laser materials processing, Optik Photonik 12, 15–17 (2017). [Google Scholar]
- Völl A, Vogt S, Wester R, Stollenwerk J, Loosen P, Application specific intensity distributions for laser materials processing: Tailoring the induced temperature profile, Opt. Laser Technol. 108, 583–591 (2018). [Google Scholar]
- Bischoff C, Völklein F, Schmitt J, Rädel U, Umhofer U, Jäger E, Lasagni AF, Design and manufacturing method of fundamental beam mode shaper for adapted laser beam profile in laser material processing, Materials (Basel, Switzerland) 12, 2254 (2019). [Google Scholar]
- Feng Z, Huang L, Gong M, Jin G, Beam shaping system design using double freeform optical surfaces, Opt. Express, OE 21, 14728–14735 (2013). [Google Scholar]
- Völl A, Wester R, Berens M, Buske P, Stollenwerk J, Loosen P, Accounting for laser beam characteristics in the design of freeform optics for laser material processing, Adv. Opt. Technol. 8, 279–287 (2019). [Google Scholar]
- Liu JS, Taghizadeh MR, Iterative algorithm for the design of diffractive phase elements for laser beam shaping, Opt. Lett. 27, 1463–1465 (2002). [Google Scholar]
- O’Shea DC, Suleski TJ, Kathman AD, Prather DW, Diffractive optics: design, fabrication, and test. Design, fabrication, and test (SPIE, Bellingham, Washington, USA, 2003). [CrossRef] [Google Scholar]
- Efron U, Spatial light modulator technology, devices and applications, (Dekker, New York, USA, 1995). [Google Scholar]
- Salter PS, Booth MJ, Adaptive optics in laser processing, Light Sci. Appl. 8, 110 (2019). [Google Scholar]
- Rosales-Guzmán C, How to shape light with spatial light modulators (Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, Washington, USA, 2017). [CrossRef] [Google Scholar]
- Dickey FM, Laser beam shaping: Theory and techniques, 2nd edn. (CRC Press, Boca Raton, Florida, USA, 2014). [Google Scholar]
- Brenner K-H, Kuemmel P, Zeitner UD, Design, analysis, and fabrication of refractive beam shaping elements for optical storage applications, in Laser Beam Shaping II, SPIE Proceedings (SPIE, 2001). [Google Scholar]
- Kaempfe T, Kley E-B, Tuennermann A, Hybrid approach to the design of refractive beam shaping elements, in Laser Beam Shaping VI, SPIE Proceedings (SPIE, 2005). [Google Scholar]
- Lin D, Leger JR, Numerical gradient-index design for coherent mode conversion, Adv. Opt. Technol. 1(3), 195–202 (2012). [Google Scholar]
- Kim H, Yang B, Lee B, Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements, J. Opt. Soc. Am. A Opt. Image Sci. 21, 2353–2365 (2004). [Google Scholar]
- Gerchberg RW, Saxton WO, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972). [Google Scholar]
- Fienup JR, Phase retrieval algorithms: a comparison, Appl. Opt. 21, 2758–2769 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- Goodman JW, Introduction to Fourier optics, 3rd edn (Roberts & Company, Englewood, Coloroda, USA, 2005). [Google Scholar]
- Nussbaumer HJ, The fast Fourier transform, in Fast Fourier transform and convolution algorithms, edited by HJ Nussbaumer, Vol. 2 (Springer, Berlin/Heidelberg, Germany, 1981). [CrossRef] [Google Scholar]
- Hofmann O, Stollenwerk J, Holly C, Iterative algorithm for the generation of phase masks for spatial laser beam shaping in arbitrary optical systems, in International Optical Design Conference 2023 (SPIE, 2023). [Google Scholar]
- Hofmann OA, Highly dynamic multi-beam and beam shaping systems for laser material processing, (RWTH Aachen University, 2023). [Google Scholar]
- Buske P, Hofmann O, Bonnhoff A, Stollenwerk J, Holly C, High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks, Opt. Express, OE 32, 7064–7078 (2024). [Google Scholar]
- Wester R, Physical optics methods for laser and nonlinear optics simulations, Adv. Opt. Technol. 2, 247–255 (2013). [Google Scholar]
- Born M, Wolf E, Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light, 7th Edn. (Cambridge University Press, Cambridge, UK, 1999). [CrossRef] [Google Scholar]
- Moser S, Ritsch-Marte M, Thalhammer G, Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators, Opt. Express 27, 25046–25063 (2019). [Google Scholar]
- Persson M, Engström D, Goksör M, Reducing the effect of pixel crosstalk in phase only spatial light modulators, Opt. Express 20, 22334–22343 (2012). [Google Scholar]
- Ronzitti E, Guillon M, Sars V de, Emiliani V, LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression, Opt. Express 20, 17843–17855 (2012). [Google Scholar]
- Makowski M, Three-plane phase-only computer hologram generated with iterative Fresnel algorithm, Opt. Eng. 44, 125805 (2005). [Google Scholar]
- Gureyev T, Pogany A, Paganin D, Wilkins S, Linear algorithms for phase retrieval in the Fresnel region, Opt. Commun. 231, 53–70 (2004). [Google Scholar]
- Zalevsky Z, Mendlovic D, Dorsch RG, Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain, Opt. Lett. 21, 842–844 (1996). [Google Scholar]
- Fienup JR, Phase-retrieval algorithms for a complicated optical system, Appl. Opt. 32, 1737–1746 (1993). [Google Scholar]
- Adamonis J, Aleknavičius A, Michailovas K, Balickas S, Petrauskienė V, Gertus T, Michailovas A, Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses, Appl. Opt. 55, 8007–8015 (2016). [Google Scholar]
- Hamamatsu Photonics, X15213-03CL. LCOS-SLM (Optical phase modulator) (Hamamatsu Photonics, 2024). https://www.hamamatsu.com/us/en/product/optical-components/lcos-slm/metal_processing_type/X15213-03CL.html. [Google Scholar]
- Shiner B, Fiber lasers for material processing, in: Critical Review: Industrial Lasers and Applications, SPIE Proceedings (SPIE, 2005). [Google Scholar]
- Vukovic N, Chan JS, Codemard CA, Zervas MN, Keen SJ, Chen R, Jesset R, Botheroyd I, Durkin M, Greenwood M, Multi-kilowatt fibre laser with azimuthal mode output beam for advanced material processing, in: Laser Resonators, Microresonators, and Beam Control XXII, (SPIE, 2020). [Google Scholar]
- Zhao T, Yu J, Li C, Huang K, Ma Y, Tang X, Fan Z, Beam shaping and compensation for high-gain Nd:glass amplification, J. Modern Optics 60, 109–115 (2013). [Google Scholar]
- Li S, Wang Y, Lu Z, Ding L, Du P, Chen Y, Zheng Z, Ba D, Dong Y, Yuan H, Bai Z, Liu Z, Cui C, High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system, Opt. Express 23, 681–689 (2015). [Google Scholar]
- Kumstel J, Enhancement of the area rate for laser macro polishing, in: Lasers in Manufacturing LIM (2017). [Google Scholar]
- Koechner W, Solid-State Laser Engineering, 6th Edn., (Springer e-books, Springer New York, New York, USA, 2006). [Google Scholar]
- Ter-Mikirtychev V, Fundamentals of fiber lasers and fiber amplifiers (Springer International Publishing, Charm, Switzerland, 2014). [CrossRef] [Google Scholar]
- Fuhrmann K, Hodgson N, Hollinger F, Weber H, Effective cross section of the Nd:YAG 1.0641‐μm laser transition, J. Appl. Phys. 62, 4041–4044 (1987). [Google Scholar]
- Park D, Jeong J, Hwang S, Lee S, Cho S, Yu TJ, Performance evaluation of solid-state laser gain module by measurement of thermal effect and energy storage, Photonics 8, 418 (2021). [Google Scholar]
- Völl A, Stollenwerk J, Loosen P, Computing specific intensity distributions for laser material processing by solving an inverse heat conduction problem, in High-power laser materials processing: lasers, beam delivery, diagnostics, and applications V, SPIE Proceedings (SPIE, 2016). [Google Scholar]
- Völl A, Methodology for the identification and implementation of application specific intensity distributions for material processing with laser radiation (RWTH Aachen University, 2020). [Google Scholar]
- Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, Ozcan A, All-optical machine learning using diffractive deep neural networks, Science (New York, N.Y.) 361, 1004–1008 (2018). [Google Scholar]
- Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, Fang L, Lin X, Dai Q, Solving computer vision tasks with diffractive neural networks, in: Optoelectronic Imaging and Multimedia Technology VI (SPIE, 2019). [Google Scholar]
- Shi J, Wei D, Hu C, Chen M, Liu K, Luo J, Zhang X, Robust light beam diffractive shaping based on a kind of compact all-optical neural network, Opt. Express, OE 29, 7084–7099 (2021). [Google Scholar]
- Idehenre IU, Mills MS, Multi-directional beam steering using diffractive neural networks, Opt. Express, OE 28, 25915–25934 (2020). [Google Scholar]
- Buske P, Völl A, Eisebitt M, Stollenwerk J, Holly C, Advanced beam shaping for laser materials processing based on diffractive neural networks, Opt. Express, OE 30, 22798–22816 (2022). [Google Scholar]
- Buske P, Janssen F, Hofmann O, Stollenwerk J, Holly C, Enhancing three-dimensional beam shaping accuracy through cascaded spatial light modulators using diffractive neural networks, in Computational Optics (SPIE, 2024). [Google Scholar]
- Buske P, Michels L, Wahl C, Grossert C, Hofmann O, Bonhoff A, Holly C, Diffractive neural networks with polynomial phase masks for laser beam shaping with quasi-continuous diffractive optical elements (2025). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.