Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 3
Number of page(s) 6
DOI https://doi.org/10.1051/jeos/2024047
Published online 22 January 2025
  1. Fabre C, Treps N, Modes and states in quantum optics, Rev. Mod. Phys. 92, 035005 (2020). https://doi.org/10.1103/RevModPhys.92.035005. [Google Scholar]
  2. Wenger J, Tualle-Brouri R, Grangier P, Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification, Opt. Lett. 29, 1267–1269 (2004). https://doi.org/10.1364/OL.29.001267. [NASA ADS] [CrossRef] [Google Scholar]
  3. Pinel O et al., Generation and characterization of multimode quantum frequency combs, Phys. Rev. Lett. 108, 083601 (2012). https://doi.org/10.1103/PhysRevLett.108.083601. [NASA ADS] [CrossRef] [Google Scholar]
  4. Iskhakov T et al., Generation and direct detection of broadband mesoscopic polarization190 squeezed vacuum, Phys. Rev. Lett. 102, 183602 (2009). https://doi.org/10.1103/PhysRevLett.102.183602. [CrossRef] [Google Scholar]
  5. Shverdin MY et al., Generation of a single-cycle optical pulse, Phys. Rev. Lett. 94, 033904 (2005). https://doi.org/10.1103/PhysRevLett.94.033904. [NASA ADS] [CrossRef] [Google Scholar]
  6. Nasr MB et al., Ultrabroadband biphoton generated via chirped quasi-phase-matched optical parametric down-conversion, Phys. Rev. Lett. 100, 183601 (2008). https://doi.org/10.1103/PhysRevLett.100.183601. [NASA ADS] [CrossRef] [Google Scholar]
  7. Sensarn S, Yin GY, Harris SE, Generation and compression of chirped biphoton, Phys. Rev. Lett. 104, 253602 (2010). https://doi.org/10.1103/PhysRevLett.104.253602. [NASA ADS] [CrossRef] [Google Scholar]
  8. Riek C et al., Subcycle quantum electrodynamics, Nature 541, 376–379 (2017). https://doi.org/10.1038/nature21024. [NASA ADS] [CrossRef] [Google Scholar]
  9. Lin Q, Zheng J, Becker W, Subcycle pulsed focused vector beams, Phys. Rev. Lett. 97, 253902 (2006). https://doi.org/10.1103/PhysRevLett.97.253902. [Google Scholar]
  10. Kizmann M et al., Subcycle squeezing of light from a time flow perspective, Nat. Phys. 15, 960–966 (2019). https://doi.org/10.1038/s41567-019-0560-2. [NASA ADS] [CrossRef] [Google Scholar]
  11. Guedes TLM et al., Spectra of ultrabroadband squeezed pulses and the finite-time unruh-davies effect, Phys. Rev. Lett. 122, 053604 (2019). https://doi.org/10.1103/PhysRevLett.122.053604. [Google Scholar]
  12. Günter G et al., Sub-cycle switch-on of ultrastrong light–matter interaction, Nature 458, 178–181 (2009). https://doi.org/10.1038/nature07838. [CrossRef] [Google Scholar]
  13. Schubert O et al., Sub-cycle control of terahertz high-harmonic generation by dynamical bloch oscillations, Nat. Photonics 8, 119–123 (2014). https://doi.org/10.1038/nphoton.2013.349. [Google Scholar]
  14. Carlson DR et al., Ultrafast electro-optic light with subcycle control, Science 361, 1358–1363 (2018). https://doi.org/10.1126/science.aat6451. [NASA ADS] [CrossRef] [Google Scholar]
  15. Shih Y, Entangled biphoton source-property and preparation, Rep. Prog. Phys. 66, 1009–1044 (2003). https://doi.org/10.1088/0034-4885/66/6/203. [NASA ADS] [CrossRef] [Google Scholar]
  16. Iskhakov TS et al., Polarization-entangled light pulses of 105 photons, Phys. Rev. Lett. 109, 150502 (2012). https://doi.org/10.1103/PhysRevLett.109.150502. [NASA ADS] [CrossRef] [Google Scholar]
  17. Svozilík J, Peřina J, Torres JP, High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion, Phys. Rev. A 86, 052318 (2012). https://doi.org/10.1103/PhysRevA.86.052318. [CrossRef] [Google Scholar]
  18. Brida G et al., Detection of multimode spatial correlation in pdc and application to the absolute calibration of a ccd camera, Opt. Express 18, 20572–20584 (2010). https://doi.org/10.1364/OE.18.020572. [CrossRef] [Google Scholar]
  19. Agafonov IN, Chekhova MV, Leuchs G, Two-color bright squeezed vacuum, Phys. Rev. A 82, 011801 (2010). https://doi.org/10.1103/PhysRevA.82.011801. [NASA ADS] [CrossRef] [Google Scholar]
  20. Kitaeva GK et al., Generation of optical signal and terahertz idler photons by spontaneous parametric down-conversion, Phys. Rev. A 98, 063844 (2018). https://doi.org/10.1103/PhysRevA.98.063844. [NASA ADS] [CrossRef] [Google Scholar]
  21. Haase B et al., Spontaneous parametric down-conversion of photons at 660 nm to the terahertz and sub-terahertz frequency range, Opt. Express 27, 7458–7468 (2019). https://doi.org/10.1364/OE.27.007458. [NASA ADS] [CrossRef] [Google Scholar]
  22. Kuznetsov KA et al., Nonlinear interference in the strongly nondegenerate regime and schmidt mode analysis, Phys. Rev. A 101, 053843 (2020). https://doi.org/10.1103/PhysRevA.101.053843. [NASA ADS] [CrossRef] [Google Scholar]
  23. Arnaut HH, Barbosa GA, Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion, Phys. Rev. Lett. 85, 286–289 (2000). https://doi.org/10.1103/PhysRevLett.85.286. [NASA ADS] [CrossRef] [Google Scholar]
  24. Law CK, Eberly JH, Analysis and interpretation of high transverse entanglement in optical parametric down conversion, Phys. Rev. Lett. 92, 127903 (2004). https://doi.org/10.1103/PhysRevLett.92.127903. [NASA ADS] [CrossRef] [Google Scholar]
  25. Straupe SS et al., Angular schmidt modes in spontaneous parametric down-conversion, Phys. Rev. A 83, 060302 (2011). https://doi.org/10.1103/PhysRevA.83.060302. [NASA ADS] [CrossRef] [Google Scholar]
  26. Dayan B, Theory of two-photon interactions with broadband down-converted light and entangled photons, Phys. Rev. A 76, 043813 (2007). https://doi.org/10.1103/PhysRevA.76.043813. [NASA ADS] [CrossRef] [Google Scholar]
  27. Jovanovic I, Ebbers CA, Barty CPJ, Hybrid chirped-pulse amplification, Opt. Lett. 27, 1622–1624 (2002). https://doi.org/10.1364/OL.27.001622. [NASA ADS] [CrossRef] [Google Scholar]
  28. Harris SE, Chirp and compress: toward single-cycle biphoton, Phys. Rev. Lett. 98, 063602 (2007). https://doi.org/10.1103/PhysRevLett.98.063602. [NASA ADS] [CrossRef] [Google Scholar]
  29. Horoshko DB, Kolobov MI, Generation of monocycle squeezed light in chirped quasi-phase-matched nonlinear crystals, Phys. Rev. A 95, 033837 (2017). https://doi.org/10.1103/PhysRevA.95.033837. [NASA ADS] [CrossRef] [Google Scholar]
  30. Horoshko DB, Kolobov MI, Towards single-cycle squeezing in chirped quasi-phase-matched optical parametric down-conversion, Phys. Rev. A 88, 033806 (2013). https://doi.org/10.1103/PhysRevA.88.033806. [NASA ADS] [CrossRef] [Google Scholar]
  31. Law CK, Walmsley IA, Eberly JH, Continuous frequency entanglement: effective finite hilbert space and entropy control, Phys. Rev. Lett. 84, 5304–5307 (2000). https://doi.org/10.1103/PhysRevLett.84.5304. [NASA ADS] [CrossRef] [Google Scholar]
  32. Horoshko DB et al., Bloch-messiah reduction for twin beams of light, Phys. Rev. A 100, 013837 (2019). https://doi.org/10.1103/PhysRevA.100.013837. [NASA ADS] [CrossRef] [Google Scholar]
  33. Fedorov M, Miklin N, Schmidt modes and entanglement, Contemp. Phys. 55, 94–109 (2014). https://doi.org/10.1080/00107514.2013.878554. [NASA ADS] [CrossRef] [Google Scholar]
  34. Grice WP, U’Ren AB, Walmsley IA, Eliminating frequency and space-time correlations in multiphoton states, Phys. Rev. A 64, 063815 (2001). https://doi.org/10.1103/PhysRevA.64.063815. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.