Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 4
Number of page(s) 8
DOI https://doi.org/10.1051/jeos/2024049
Published online 24 January 2025
  1. Chen Z, Taflove A, Backman V, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique, Opt. Express 12, 7, 1214–1220 (2004). https://doi.org/10.1364/OPEX.12.001214. [CrossRef] [Google Scholar]
  2. Heifetz A, Kong SC, Sahakian AV, Taflove A, Backman V, Photonic nanojets, J. Comput. Theor. Nanosci. 6, 9, 1979–1992 (2009). https://doi.org/10.1166/jctn.2009.1254. [CrossRef] [Google Scholar]
  3. Darafsheh A, Photonic nanojets and their applications, J. Phys. Photon. 3, 2, 022001 (2021). https://doi.org/10.1088/2515-7647/abdb05. [Google Scholar]
  4. Wriedt T, Mie theory: a review, in The Mie Theory: Basics and Applications (Springer Berlin, Heidelberg, Germany, 2012), pp. 53–71. [NASA ADS] [CrossRef] [Google Scholar]
  5. Hulst HC, van de Hulst HC, Light Scattering by Small Particles (Courier Corporation, New York, 1981). [Google Scholar]
  6. Luk’yanchuk BS, Paniagua-Domínguez R, Minin I, Minin O, Wang Z, Refractive index less than two: photonic nanojets yesterday, today and tomorrow, Opt. Mater. Express 7, 6, 1820–1847 (2017). https://doi.org/10.1364/OME.7.001820. [CrossRef] [Google Scholar]
  7. Taflove A, Oskooi A, Johnson SG, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House, Norwood, Massachusetts, 2013). [Google Scholar]
  8. Ge S, Liu W, Zhang J, Huang Y, Xi Y, Yang P et al., Novel bilayer micropyramid structure photonic nanojet for enhancing a focused optical field, Nanomaterials 11, 8, 2034 (2021). https://doi.org/10.3390/nano11082034. [CrossRef] [Google Scholar]
  9. Minin IV, Minin OV, Geints YE, Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: brief review, Annalen der Physik 527, 7–8, 491–497 (2015). https://doi.org/10.1002/andp.201500132. [NASA ADS] [CrossRef] [Google Scholar]
  10. Geints YE, Minin IV, Panina EK, Zemlyanov AA, Minin OV, Comparison of photonic nanojets key parameters produced by nonspherical microparticles, Opt. Quantum Electron. 49, 1–7 (2017). https://doi.org/10.1007/s11082-017-0958-y. [CrossRef] [Google Scholar]
  11. Śliwak A, Jeleń M, Patela S, Modelling and analysis of fibre microlenses with ray-tracing and finite-difference methods, Opto-Electron. Rev. 30, e140147 (2022). https://doi.org/10.24425/opelre.2022.140147. [Google Scholar]
  12. Zhou Y, Tang Y, He Y, Liu X, Hu S, Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging, Appl. Phys. Express 11, 3, 032501 (2018). https://doi.org/10.7567/APEX.11.032501. [NASA ADS] [CrossRef] [Google Scholar]
  13. Goodman JW, Introduction to Fourier Optics (Roberts and Company Publishers, Englewood, Colorado, 2005). [Google Scholar]
  14. Shen F, Wang A, Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula, Appl. Opt. 45, 6, 1102–1110 (2006). https://doi.org/10.1364/AO.45.001102. [NASA ADS] [CrossRef] [Google Scholar]
  15. Sherman GC, Application of the convolution theorem to Rayleigh’s integral formulas, JOSA 57, 4, 546–547 (1967). https://doi.org/10.1364/JOSA.57.000546. [Google Scholar]
  16. Lee S, Li L, Wang Z, Optical resonances in microsphere photonic nanojets, J. Opt. 16, 1, 015704 (2013). https://doi.org/10.1088/2040-8978/16/1/015704. [Google Scholar]
  17. Bérenger JP, Perfectly Matched Layer (PML) for Computational Electromagnetics (Springer Nature, Cham, 2022). [Google Scholar]
  18. Ansys. PML boundary conditions in FDTD and MODE. [Retrieved 07 Nov. 2024], https://optics.ansys.com/hc/en-us/articles/360034382674-PML-boundary-conditions-in-FDTD-and-MODE. [Google Scholar]
  19. Gedney SD, Zhao B, An auxiliary differential equation formulation for the complex-frequency shifted PML, IEEE Trans. Antennas Propag. 58, 3, 838–847 (2009). https://doi.org/10.1109/TAP.2009.2037765. [Google Scholar]
  20. Ansys. Symmetric and anti-symmetric BCs in FDTD and MODE. [Retrieved 07 Nov. 2024], https://optics.ansys.com/hc/en-us/articles/360034382694-Symmetric-and-anti-symmetric-BCs-in-FDTD-and-MODE. [Google Scholar]
  21. Obayya S, Novel finite element analysis of optical waveguide discontinuity problems, J. Lightwave Technol. 22, 5, 1420–1425 (2004). https://doi.org/10.1109/JLT.2004.827671. [Google Scholar]
  22. Said AM, Heikal A, Areed NF, Obayya S, Why do field-based methods fail to model plasmonics? IEEE Photon. J. 8, 5, 1–13 (2016). https://doi.org/10.1109/JPHOT.2016.2600367. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.