Open Access
Review
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 21, Number 1, 2025
Article Number 2
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2024046
Published online 22 January 2025
  1. Skolnik MI, Introduction to Radar, edited by D. Crispell, 1st edn. (McGRAW-Hill Book Company, New York, 1962). [Google Scholar]
  2. Chen XL et al., Radar low-observable target detection, Sci. Technol. Rev. 35, 11 (2017). [Google Scholar]
  3. Capmany J, Novak D, Microwave photonics combines two worlds, Nat. Photon. 1, 6, 319 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  4. Seeds AJ, Microwave photonics, IEEE Trans. Microw. Theroy Tech. 50, 3 (2002). [Google Scholar]
  5. Pan S, Zhu D, Zhang F, Microwave photonics for modern radar systems, Trans. Nanjing Univ. Aeronaut. Astronaut. 31, 3 (2014). [Google Scholar]
  6. Pan SL, Zhang YM, Microwave photon radar and key technologies, Sci. Technol. Rev. 35, 20 (2017). [Google Scholar]
  7. Zhang MY, Optically Controlled Phased Array Radar, edited by J. Liu (National Defense Industry Press, Peking, 2008). [Google Scholar]
  8. Jia CY, Li DW, Ye LH, Phased array radar and optical-controlled phased array radar, Electron. Dev. 29, 598 (2006). [Google Scholar]
  9. Sun HB et al., Development of phased array radar antenna delay technology, J. Microw. 37, 5 (2021). [Google Scholar]
  10. Pan SL, Zhang YM, Microwave photonic radar, J. Lightwave Technol. 38, 19 (2020). [Google Scholar]
  11. Khamees HT, Sameer A, Laser beam blink propagation: evaluation BER in free space resembled dual SLG, Opt. Lasers Eng. 171, 107761 (2023). [NASA ADS] [CrossRef] [Google Scholar]
  12. Khamees HT, Hussein AS, Abdul Khaleq NI, An evaluation of scintillation index in atmospheric turbulent for new super Lorentz vortex Gaussian beam, TELKOMNIKA (Telecommun. Comput. Electron. Control) 21, 1, 1–7 (2023). [CrossRef] [Google Scholar]
  13. Khamees HT, Laser Gaussian beam analysis of structure constant depends on Kolmogorov in the turbulent atmosphere for a variable angle of wave propagation, J. Laser Appl. 34, 2 (2022). [Google Scholar]
  14. Esho AO, Iluyomade TD, Olatunde TM, Next-generation materials for space electronics: a conceptual review, Open Access Res. J. Eng. Technol. 6, 2, 51–62 (2024). [Google Scholar]
  15. Carter CB, Ceramics & electronic materials in the Journal of Materials Science, J. Mater. Sci. 59, 5, 1783–1787 (2024). [Google Scholar]
  16. Liu J et al., Eutectic high-entropy alloys and their applications in materials processing engineering: a review, J. Mater. Sci. Technol. 189, 211–246 (2024). [Google Scholar]
  17. Khamees HT, Average intensity of SLVGB for slant path propagation in atmospheric turbulence, Results Opt. 5, 100159 (2021). [Google Scholar]
  18. Khamees HT, Majeed MS, A receiver intensity for Super Lorentz Gaussian beam (SLG) propagation via the moderate turbulent atmosphere using a novelty mathematical model, J. Opt. Commun. 44, s1, s1857–s1864 (2024). [Google Scholar]
  19. Khamees HT et al., Structure constant analyzing of SLG beam Kolmogorov in atmospheric slant path propagation, AIP Conf. Proc. 2129, 1 (2019). [Google Scholar]
  20. Khamees HT, Atmospheric propagation model and affecting on laser beam propagation via free space, Front. Opt. OSA Tech. Digest (2017). [Google Scholar]
  21. Hansen RC, Phased Array Antennas, edited by J. Behley (John Wiley & Sons, New York, 2009). [CrossRef] [Google Scholar]
  22. Pu T et al., Principles and Applications of Microwave Photonics, edited by Q.H. Li (Publishing House of Electronics Industry, Peking, 2015). [Google Scholar]
  23. Yu AL, Design and Implementation of Beamforming Network Based on Optical Wavelength Division Multiplexing True Delay (Shanghai Jiao Tong University, Shanghai, 2015). [Google Scholar]
  24. Sun XH, True Time-Delay Optical Beamforming Technology with Optic Switched Differential Structure and Its Application in Radar Target Direction Finding (Zhejiang University, Hangzhou, 2022). [Google Scholar]
  25. Huang SG, Research on Optical Beam Forming System and the Application of RF Orbital Angular Momentum (Beijing University of Posts and Telecommunications, Peking, 2020). [Google Scholar]
  26. Wang Y et al., Photonics-assisted joint high-speed communication and high resolution radar detection system, Opt. Lett. 46, 24 (2021). [NASA ADS] [Google Scholar]
  27. Bliek L et al., Automatic delay tuning of a novel ring resonator-based photonic beamformer for a transmit phased array antenna, J. Lightwave Technol. 37, 19 (2019). [Google Scholar]
  28. Burla M et al., Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control, IEEE Photon. Technol. Lett. 25, 12 (2013). [Google Scholar]
  29. Xiang C, Davenport ML, Khurgin JB et al., Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators, IEEE J. Sel. Top. Quantum Electron. 24, 4 (2018). [CrossRef] [Google Scholar]
  30. Shan W et al., Broadband continuously tunable microwave photonic delay line based on cascaded silicon microrings, Opt. Express 29, 3 (2021). [Google Scholar]
  31. Xue XX et al., Microcomb-based true-time delay network for microwave beamforming with arbitrary beam pattern control, J. Lightwave Technol. 36, 12 (2018). [Google Scholar]
  32. Ren AY, Study of optical fiber delay line based on fiber Bragg grating. School of optoelectronic information, 2016. [Google Scholar]
  33. Sun H, Wang Y, Chen LR, Integrated discretely tunable optical delay line based on step-chirped subwavelength grating waveguide bragg gratings, J. Lightwave Technol. 38, 19 (2020). [Google Scholar]
  34. Wang Y et al., On-chip optical true time delay lines based on subwavelength grating waveguides, Opt. Lett. 46, 6, 1045–1048 (2021). [CrossRef] [Google Scholar]
  35. Srivastava NK, Parihar R, Raghuwanshi SK, Efficient photonic beamforming system incorporating a unique featured tunable chirped fiber Bragg grating for application extended to the Ku-band, IEEE Trans. Microw. Theory Tech. 68, 5 (2020). [Google Scholar]
  36. Pérez-López D, Sanchez E, Capmany J, Programmable true time delay lines using integrated waveguide meshes, J. Lightwave Technol. 36, 19 (2018). [Google Scholar]
  37. Zhu C et al., Silicon integrated microwave photonic beamformer, Optica 7, 9 (2020). [Google Scholar]
  38. Duan X et al., Improvement and implementation of a multi-channel programmable optical controlled true time delay network, Opt. Commun. Technol. 41, 5 (2017). [Google Scholar]
  39. Niu XY et al., Primary study on time control technology of active phased array based on photoconductive microwave source, High Power Laser Partical Beams 35, 1–7 (2023). [Google Scholar]
  40. Tessema NM et al., Wavelength-Dependent Continuous Delay Based on a Si3N4 Optical Ring Resonator for K-Band Radio Beamformer (IEEE International Topical Meeting on Microwave Photonics, California, 2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.