Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Plasmonica Collection
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/jeos/2024015 | |
Published online | 29 April 2024 |
- Baker M.J., Trevisan J., Bassan P., Bhargava R., Butler H.J., Dorling K.M., Fielden P.R., Fogarty S.W., Fullwood N.J., Heys K.A., Hughes C., Lasch P., Martin-Hirsch P.L., Obinaju B., Sockalingum G.D., Sulé-Suso J., Strong R.J., Walsh M.J., Wood B.R., Gardner P., Martin F.L. (2014) Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 9, 1771–1791. [CrossRef] [Google Scholar]
- Brown L.V., Yang X., Zhao K., Zheng B.Y., Nordlander P., Halas N.J. (2015) Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA), Nano Lett. 15, 1272–1280. [NASA ADS] [CrossRef] [Google Scholar]
- Dong L., Yang X., Zhang C., Cerjan B., Zhou L., Tseng M.L., Zhang Y., Alabastri A., Nordlander P., Halas N.J. (2017) Nanogapped Au Antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy, Nano Lett. 17, 5768–5774. [NASA ADS] [CrossRef] [Google Scholar]
- Rodrigo D., Limaj O., Janner D., Etezadi D., De Abajo F.J.G., Pruneri V., Altug H. (2015) Mid-infrared plasmonic biosensing with graphene, Science 349, 165–168. [Google Scholar]
- Ataka K., Tilman K., Joachim Heberle H. (2010) Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems, Angew. Chem. Int. Ed. 49, 32, 5416–5424. [CrossRef] [Google Scholar]
- López-Lorente Á.I., Mizaikoff B. (2016) Mid-infrared spectroscopy for protein analysis: potential and challenges, Anal. Bioanal. Chem. 408, 2875–2889. [CrossRef] [Google Scholar]
- Ernst O.P., Lodowski D.T., Elstner M., Hegemann P., Brown L.S., Kandori H. (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms, Chem. Rev. 114, 1, 126–163. [CrossRef] [Google Scholar]
- Barth A. (2007) Infrared spectroscopy of proteins, Biochim. Biophys. Acta-Bioenergetics 1767, 9, 1073–1101. [CrossRef] [Google Scholar]
- Lorenz-Fonfria V.A. (2020) Infrared difference spectroscopy of proteins: from bands to bonds, Chem. Rev. 120, 7, 3466–3576. [CrossRef] [Google Scholar]
- Blume A., Kerth A. (2013) Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy, Biochim. Biophys. Acta-Biomembranes 1828, 10, 2294–305. [CrossRef] [Google Scholar]
- Enders D., Pucci A. (2006) Surface Enhanced Infrared Absorption of Octadecanethiol on Wet-Chemically prepared Au Nanoparticle Films, Appl. Phys. Lett. 88, 184104. [NASA ADS] [CrossRef] [Google Scholar]
- Hoffmann F.M. (1983) Infrared reflection-absorption spectroscopy of adsorbed molecules, Surf. Sci. Rep. 3, 2, 107–192. [NASA ADS] [CrossRef] [Google Scholar]
- Occhicone A., Pea M., Polito R., Giliberti V., Sinibaldi A., Mattioli F., Cibella S., Notargiacomo A., Nucara A., Biagioni P., Michelotti F., Ortolani M., Baldassarre L. (2020) Spectral Characterization of mid-infrared Bloch surface waves excited on a truncated 1D photonic crystal, ACS Photonics 8, 1, 350–359. [Google Scholar]
- Biagioni P., Huang J.S., Hecht B. (2012) Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75, 2, 024402. [NASA ADS] [CrossRef] [Google Scholar]
- Neubrech F., Huck C., Weber K., Pucci A., Giessen H. (2017) Surface-enhanced infrared spectroscopy using resonant nanoantennas, Chem. Rev. 117, 7, 5110–5145. [CrossRef] [Google Scholar]
- Adato R., Altug H. (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas, Nat. Commun. 4, 1, 2154. [CrossRef] [Google Scholar]
- Adato R., Yanik A.A., Amsden J.J., Kaplan D.L., Omenetto F.G., Hong M.K., Erramilli S., Altug H. (2009) Ultra-sensitive vibrational spectroscopy of protein monnolayers with plasmonic nanoantenna arrays, Proc. Natl. Acad. Sci. 106, 46, 19227–19232. [NASA ADS] [CrossRef] [Google Scholar]
- Temperini M.E., Di Giacinto F., Romanò S., Di Santo R., Augello A., Polito R., Baldassarre L., Giliberti V., Papi M., Basile U., Niccolini B., Krasnowska E.K., Serafno A., De Spirito M., Di Gaspare A., Ortolani M., Ciasca G. (2022) Antenna-enhanced mid-infrared detection of Extracellular Vesicles derived from human cancer cell cultures, J. Nanobiotechnol. 20, 1, 530. [CrossRef] [Google Scholar]
- Neubrech F., Pucci A., Cornelius T.W., Karim S., García-Etxarri A., Aizpurua J. (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection, Phys. Rev. Lett. 101, 15, 157403. [NASA ADS] [CrossRef] [Google Scholar]
- Adato R., Serap A., Hatice A. (2015) Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy, Mater. Today 18, 8, 436–446. [CrossRef] [Google Scholar]
- Rodrigo D., Tittl A., Ait-Bouziad N., John-Herpin A., Limaj O., Kelly C., Yoo D., Wittenberg N.J., Oh S.H., Lashuel H.A., Altug H. (2018) Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces, Nat. Commun. 9, 1, 2160. [Google Scholar]
- Aouani H., Sipova H., Rahmani M., Navarro-Cia M., Hegnerova K., Homola J., Hong M., Maier S.A. (2013) Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas, ACS Nano 7, 1, 669–675. [CrossRef] [Google Scholar]
- D’Andrea C., Bochterle J., Toma A., Huck C., Neubrech F., Messina E., Fazio B., Marago O.M., Di Fabrizio E., Lamy de La Chapelle M., Gucciardi P.G., Pucci A. (2013) Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy, ACS Nano 7, 4, 3522–3531. [CrossRef] [Google Scholar]
- Haupts U., Tittor J., Oesterhelt D. (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule, Annu. Rev. Biophys. Biomol. Struct. 28, 367–399. [Google Scholar]
- Lanyi J.K. (2006) Proton transfers in the bacteriorhodopsin photocycle, Biochim. Biophys. Acta-Bioenergetics 1757, 8, 1012–1018. [CrossRef] [Google Scholar]
- Giordano M.C., Longhi S., Barelli M., Mazzanti A., Buatier de Mongeot F., Della Valle G. (2018) Plasmon hybridization engineering in self-organized anisotropic metasurfaces, Nano Research 11, 3943–3956. [Google Scholar]
- Barelli M., Giordano M.C., Gucciardi P.G., Buatier de Mongeot F. (2020) Self-organized nanogratings for large-area surface plasmon polariton excitation and surface-enhanced Raman spectroscopy sensing, ACS Appl. Nano Mater. 3, 9, 8784–8793. [CrossRef] [Google Scholar]
- Giordano M.C., Tzschoppe M., Barelli M., Vogt J., Huck C., Canepa F., Pucci A., Buatier de Mongeot F. (2020) Self-organized nanorod arrays for large-area surface-enhanced infrared absorption, ACS Appl. Mater. Interfaces 12, 9, 11155–11162. [CrossRef] [Google Scholar]
- Giordano M.C., Buatier de Mongeot F. (2018) Anisotropic nanoscale wrinkling in solid-state substrates, Adv. Mater. 30, 30, 1801840. [NASA ADS] [CrossRef] [Google Scholar]
- Giordano M.C., di Sacco F., Barelli M., Portale G., Buatier de Mongeot F. (2021) Self-organized tailoring of faceted glass nanowrinkles for organic nanoelectronics, ACS Appl. Nano Mater. 4, 1940–1950. [CrossRef] [Google Scholar]
- Barelli M., Mazzanti A., Giordano M.C., Della Valle G., Buatier de Mongeot F. (2020) Color routing via cross-polarized detuned plasmonic nanoantennas in large-area metasurfaces, Nano Lett. 20, 6, 4121–4128. [NASA ADS] [CrossRef] [Google Scholar]
- Almeida Rui M. (1992) Detection of LO modes in glass by infrared reflection spectroscopy at oblique incidence, Phys. Rev. B 45, 1, 161–170. [NASA ADS] [CrossRef] [Google Scholar]
- Lu F., Jin M., Belkin M.A. (2014) Tip-enhanced infrared nanospectroscopy via molecular expansion force detection, Nat. Photonics 8, 4, 307–312. [CrossRef] [Google Scholar]
- Lu F., Belkin M.A. (2011) Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers, Opt. Express 19, 21, 19942–19947. [CrossRef] [Google Scholar]
- Giliberti V., Polito R., Ritter E., Broser M., Hegemann P., Puskar L., Schade U., Zanetti-Polzi L., Daidone I., Corni S., Rusconi F., Biagioni P., Baldassarre L., Ortolani M. (2019) Tip-enhanced infrared difference-nanospectroscopy of the proton pump activity of bacteriorhodopsin in single purple membrane patches, Nano Lett. 19, 5, 3104–3114. [Google Scholar]
- Greenler R.G. (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques, J. Chem. Phys. 44, 1, 310–315. [NASA ADS] [CrossRef] [Google Scholar]
- Giliberti V., Badioli M., Nucara A., Calvani P., Ritter E., Puskar L., Aziz E.F., Hegemann P., Schade U., Ortolani M., Baldassarre L. (2017) Heterogeneity of the transmembrane protein conformation in purple membranes identified by infrared nanospectroscopy, Small 13, 44, 1701181. [CrossRef] [Google Scholar]
- Polito R., Temperini M.E., Ritter E., Puskar L., Schade U., Broser M., Hegemann P., Baldassarre L., Ortolani M., Giliberti V. (2021) Conformational changes of a membrane protein determined by infrared difference spectroscopy beyond the diffraction limit, Phys. Rev. Appl. 16, 014048. [NASA ADS] [CrossRef] [Google Scholar]
- Ritter E., Puskar L., Bartl F.J., Aziz E.F., Hegemann P., Schade U. (2015) Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin, Front. Mol. Biosci. 2, 38. [NASA ADS] [CrossRef] [Google Scholar]
- Oesterhelt D., Stoeckenius W. (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Methods Enzymol 31, 667–678. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.