Plasmonica Collection
Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Plasmonica Collection
Article Number 14
Number of page(s) 4
DOI https://doi.org/10.1051/jeos/2024012
Published online 29 April 2024
  1. Decker M., Staude I. (2016) Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics, J. Opt. 18, 103001. [NASA ADS] [CrossRef] [Google Scholar]
  2. Kuznetsov A.I., Miroshnichenko A.E., Brongersma M.L., Kivshar Y.S., Luk’yanchuk B. (2016) Optically resonant dielectric nanostructures, Science 354, aag2472. [CrossRef] [Google Scholar]
  3. Alhalabya H., Zaraket H., Principe M. (2021) Enhanced photoluminescence with dielectric nanostructures: a review, Results Opt. 3, 100073. [NASA ADS] [CrossRef] [Google Scholar]
  4. Staude I., Miroshnichenko A.E., Decker M., Fofang N.T., Liu S., Gonzales E., Dominguez J., Luk T.S., Neshev D.N., Brener I., Kivshar Y. (2013) Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano 7, 7824–7832. [CrossRef] [Google Scholar]
  5. Gili V.F., Carletti L., Locatelli A., Rocco D., Finazzi M., Ghirardini L., Favero I., Gomez C., Lemaître A., Celebrano M., De Angelis C., Leo G. (2016) Monolithic AlGaAs second-harmonic nanoantennas, Opt. Exp. 24, 15965–15971. [NASA ADS] [CrossRef] [Google Scholar]
  6. Grinblat G., Li Y., Nielsen M.P., Oulton R.F., Maier S.A. (2017) Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk, ACS Nano 11, 953–960. [CrossRef] [Google Scholar]
  7. Cambiasso J., Grinblat G., Li Y., Rakovich A., Cortés E., Maier S.A. (2017) Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas, Nano Lett. 17, 1219–1225. [NASA ADS] [CrossRef] [Google Scholar]
  8. Capretti A., Lesage A., Gregorkiewicz T. (2017) Integrating quantum dots and dielectric Mie resonators: a hierarchical metamaterial inheriting the best of both, ACS Photonics 4, 2187–2196. [CrossRef] [Google Scholar]
  9. Regmi R., Berthelot J., Winkler P.M., Mivelle M., Proust J., Bedu F., Ozerov I., Begou T., Lumeau J., Rigneault H., García-Parajó M.F., Bidault S., Wenger J., Bonod N. (2016) All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules, Nano Lett. 168, 5143–5151. [NASA ADS] [CrossRef] [Google Scholar]
  10. Carletti L., Rocco D., Locatelli A., De Angelis C., Gili V.F., Ravaro M., Favero I., Leo G., Finazzi M., Ghirardini L., Celebrano M., Marino G., Zayats A.V. (2017) Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas, Nanotechnology 28, 114005. [Google Scholar]
  11. Sortino L., Zotev P.G., Phillips C.L., Brash A.J., Cambiasso J., Marensi E., Fox A.M., Maier S.A., Sapienza R., Tartakovskii A.I. (2021) Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas, Nature Comm. 12, 6063. [NASA ADS] [CrossRef] [Google Scholar]
  12. Yang Y., Zenin V.A., Bozhevolnyi S.I. (2018) Anapole-assisted strong field enhancement in individual all-dielectric nanostructures, ACS Photonics 5, 1960–1966. [CrossRef] [Google Scholar]
  13. Mignuzzi S., Vezzoli S., Horsley S.A., Barnes W.L., Maier S.A., Sapienza R. (2019) Nanoscale design of the local density of optical states, Nano Lett. 19, 1613–1617. [Google Scholar]
  14. Cao L., Fan P., Barnard E.S., Brown A.M., Brongersma M.L. (2010) Tuning the color of silicon nanostructures, Nano Lett. 10, 2649–2654. [Google Scholar]
  15. Celebrano M., Baselli M., Bollani M., Frigerio J., Bahgat Shehata A., Della Frera A., Tosi A., Farina A., Pezzoli F., Osmond J., Wu X., Hecht B., Sordan R., Chrastina D., Isella G., Duò L., Finazzi M., Biagioni P. (2015) Emission engineering in germanium nanoresonators, ACS Photonics 2, 53–59. [CrossRef] [Google Scholar]
  16. Ee H.S., Kang J.H., Brongersma M.L., Seo M.K. (2015) Shape-dependent light scattering properties of subwavelength silicon nanoblocks, Nano Lett. 15, 1759–1765. [NASA ADS] [CrossRef] [Google Scholar]
  17. Landreman P.E., Chalabi H., Park J., Brongersma M.L. (2016) Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators, Opt. Exp. 24, 29760–29772. [NASA ADS] [CrossRef] [Google Scholar]
  18. Frolov A.Y., Verellen N., Li J., Zheng X., Paddubrouskaya H., Denkova D., Shcherbakov M.R., Vandenbosch G.A.E., Panov V.I., Van Dorpe P., Fedyanin A.A., Moshchalkov V.V. (2017) Near-field mapping of optical Fabry-Perot modes in all-dielectric nanoantennas, Nano Lett. 17, 7629–7637. [NASA ADS] [CrossRef] [Google Scholar]
  19. Córdova-Castro R.M., van Dam B., Lauri A., Maier S.A., Sapienza R., De Wilde Y., Izeddin I., Krachmalnicoff V. (2024) Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas, Light Sci. App. 13, 7. [CrossRef] [Google Scholar]
  20. Bakker R.M., Permyakov D., Yu Y.F., Markovich D., Paniagua-Domínguez R., Gonzaga L., Samusev A., Kivshar Y., Luk’yanchuk B., Kuznetsov A.I. (2015) Magnetic and electric hotspots with silicon nanodimers, Nano Lett. 15, 2137–2142. [NASA ADS] [CrossRef] [Google Scholar]
  21. Granchi N., Montanari M., Ristori A., Khoury M., Bouabdellaoui M., Barri C., Fagiani L., Gurioli M., Bollani M., Abbarchi M., Intonti F. (2021) Near-field hyper-spectral imaging of resonant Mie modes in a dielectric island, APL Photonics 6, 126102. [NASA ADS] [CrossRef] [Google Scholar]
  22. Mignuzzi S., Mota M., Coenen T., Li Y., Mihai A.P., Petrov P.K., Oulton R.F.M., Maier S.A., Sapienza R. (2018) Energy-momentum cathodoluminescence spectroscopy of dielectric nanostructures, ACS Photonics 5, 1381–1387. [CrossRef] [Google Scholar]
  23. Sapienza R., Coenen T., Renger J., Kuttge M., van Hulst N.F., Polman A. (2012) Deep-subwavelength imaging of the modal dispersion of light, Nat. Mat. 11, 781–787. [Google Scholar]
  24. Dang Z., Chen Y., Fang Z. (2023) Cathodoluminescence nanoscopy: state of the art and beyond, ACS Nano 17, 24431–24448. [CrossRef] [Google Scholar]
  25. Coenen T., van de Groep J., Polman A. (2013) Resonant modes of single silicon nanocavities excited by electron irradiation, ACS Nano. 7, 1689–1698. [CrossRef] [Google Scholar]
  26. Polman A., Kociak M., García de Abajo F.J. (2019) Electron-beam spectroscopy for nanophotonics, Nat. Mat. 18, 1158–1171. [NASA ADS] [CrossRef] [Google Scholar]
  27. Dong Z., Mahfoud Z., Paniagua-Domínguez R., Wang H., Fernández-Domínguez A.I., Gorelik S., Ha S.T., Tjiptoharsono F., Kuznetsov A.I., Bosman M., Yang J.K.W. (2022) Nanoscale mapping of optically inaccessible bound-states-in-the-continuum, Light Sci. App. 11, 20. [NASA ADS] [CrossRef] [Google Scholar]
  28. Frigerio J., Ballabio A., Isella G., Sakat E., Pellegrini G., Biagioni P., Bollani M., Napolitani E., Manganelli C., Virgilio M., Grupp A., Fischer M.P., Brida D., Gallacher K., Paul D.J., Baldassarre L., Calvani P., Giliberti V., Nucara A., Ortolani M. (2016) Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics, Phys. Rev. B 94, 085202. [NASA ADS] [CrossRef] [Google Scholar]
  29. Auad Y., Hamon C., Tencé M., Lourenço-Martins H., Mkhitaryan V., Stéphan O., Garcia de Abajo F.J., Tizei L.H., Kociak M. (2022) Unveiling the coupling of single metallic nanoparticles to whispering-gallery microcavities, Nano Lett. 22, 319–327. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.