Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 20, Number 1, 2024
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 16
Number of page(s) 14
DOI https://doi.org/10.1051/jeos/2024008
Published online 29 April 2024
  1. Aiello A., Woerdman J.P. (2008) Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts, Opt. Lett. 33, 1437–1439. [NASA ADS] [CrossRef] [Google Scholar]
  2. Bliokh K.Y., Bliokh Y.P. (2007) Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet, Phys. Rev. E 75, 066609. [NASA ADS] [CrossRef] [Google Scholar]
  3. Dennis M.R., Götte J.B. (2012) The analogy between optical beam shifts and quantum weak measurements, New J. Phys. 14, 073013. [NASA ADS] [CrossRef] [Google Scholar]
  4. Bliokh K.Y., Aiello A. (2013) Goos–Hänchen and Imbert–Fedorov beam shifts: an overview, J. Opt. 15, 014001. [NASA ADS] [CrossRef] [Google Scholar]
  5. Götte J.B., Dennis M.R. (2012) Generalized shifts and weak values for polarization components of reflected light beams, New J. Phys. 14, 073016. [CrossRef] [Google Scholar]
  6. Töppel F., Ornigotti M., Aiello A. (2013) Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective, New J. Phys. 15, 113059. [CrossRef] [Google Scholar]
  7. Kong L.-J., Qian S.-X., Ren Z.-C., Wang X.-L., Wang H.-T. (2012) Effects of orbital angular momentum on the geometric spin Hall effect of light, Phys. Rev. A 85, 035804. [Google Scholar]
  8. Bliokh K.Y., Nori F. (2012) Relativistic hall effect, Phys. Rev. Lett. 108, 120403. [NASA ADS] [CrossRef] [Google Scholar]
  9. Smirnova D.A., Travin V.M., Bliokh K.Y., Nori F. (2018) Relativistic spin-orbit interactions of photons and electrons, Phys. Rev. A 97, 043840. [Google Scholar]
  10. Korger J., Aiello A., Chille V., Banzer P., Wittmann C., Lindlein N., Marquardt C., Leuchs G. (2014) Observation of the geometric spin hall effect of light, Phys. Rev. Lett. 112, 113902. [NASA ADS] [CrossRef] [Google Scholar]
  11. Bliokh K.Y., Samlan C.T., Prajapati C., Puentes G., Viswanathan N.K., Nori F. (2016) Spin-hall effect and circular birefringence of a uniaxial crystal plate, Optica 3, 1039. [NASA ADS] [CrossRef] [Google Scholar]
  12. Takayama O., Puentes G. (2018) Enhanced spin Hall effect of light by transmission in a polymer, Opt. Lett. 43, 1343. [NASA ADS] [CrossRef] [Google Scholar]
  13. Takayama O., Sukham J., Malureanu R., Lavrinenko A.V., Puentes G. (2018) Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths, Opt. Lett. 43, 4602. Editors Pick Optics Letters 2019. [NASA ADS] [CrossRef] [Google Scholar]
  14. Hosten O., Kwiat P. (2008) Observation of the spin hall effect of light via weak measurements, Science 319, 787. [NASA ADS] [CrossRef] [Google Scholar]
  15. Lim J.-G., Kwak K., Song J.-K. (2017) Computation of refractive index and optical retardation in stretched polymer films, Opt. Express 25, 16409–16418. [NASA ADS] [CrossRef] [Google Scholar]
  16. Ciattoni A., Cincotti G., Palma C. (2003) Angular momentum dynamics of a paraxial beam in a uniaxial crystal, Phys. Rev. E 67, 036618. [CrossRef] [Google Scholar]
  17. Aharonov Y., Albert D.Z., Vaidman L. (1988) How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351. [Google Scholar]
  18. Duck I.M., Stevenson P.M., Sudarshan E.C.G. (1989) The sense in which a "weak measurement" of a spin-½ particle's spin component yields a value 100, Phys. Rev. D 40, 2112. [NASA ADS] [CrossRef] [Google Scholar]
  19. Kofman A.G., Ashhab S., Nori F. (2012) Nonperturbative theory of weak pre-and post-selected measurements, Phys. Rep. 520, 43–133. [CrossRef] [Google Scholar]
  20. Dressel J., Malik M., Miatto F.M., Jordan A.N., Boyd R.W. (2014) Colloquium: understanding quantum weak values: basics and applications, Rev. Mod. Phys. 86, 307. [Google Scholar]
  21. Ritchie N.W.M., Story J.G., Hulet R.G. (1991) Realization of a measurement of a “weak value”, Phys. Rev. Lett. 66, 1107. [NASA ADS] [CrossRef] [Google Scholar]
  22. Puentes G., Hermosa N., Torres J.P. (2012) Weak measurements with orbital-angular-momentum pointer states, Phys Rev. Lett. 109, 040401. [Google Scholar]
  23. Prajapati C., Pidishety S., Viswanathan N.K. (2014) Polarimetric measurement method to calculate optical beam shifts, Opt. Lett. 39, 4388. [NASA ADS] [CrossRef] [Google Scholar]
  24. Papakostasetal A. (2003) Optical manifestations of planar chirality, Phys. Rev. Lett. 90, 107404. [NASA ADS] [CrossRef] [Google Scholar]
  25. Prosvirnin S.L., Zheludev N.I. (2005) Polarization effects in the diffraction of light by a planar chiral structure, Phys. Rev. E 71, 037603. [NASA ADS] [CrossRef] [Google Scholar]
  26. Bliokh K., Nori F. (2015) Transverse and longitudinal angular momenta of light, Phys. Rep. 592, 1–38. [NASA ADS] [CrossRef] [Google Scholar]
  27. Beth R.A. (1936) Mechanical detection and measurement of the angular momentum of light, Phys. Rev. 50, 115. [Google Scholar]
  28. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45, 8185. [CrossRef] [PubMed] [Google Scholar]
  29. Karimi E., Schulz S.A., De Leon I., Qassim H., Upham J., Boyd R.W. (2014) Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface, Light Sci. Appl. NPG 3, e167. [NASA ADS] [CrossRef] [Google Scholar]
  30. She A., Capasso F. (2016) Parallel Polarization State Generation, Nat. Sci. Rep. 6, 26019. [Google Scholar]
  31. Devlin R.C., Ambrosio A., Rubin N.A., Mueller J.B., Capasso F. (2017) Arbitrary spin-to–orbital angular momentum conversion of light, Science 358, 896–901. [CrossRef] [Google Scholar]
  32. Mueller J., Rubin N., Devlin R., Groever B., Capasso F. (2017) Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization, Phys. Rev. Lett. 118, 113901. [Google Scholar]
  33. Zhao H., Quan B., Wang X., Gu C., Li J., Zhang Y. (2018) Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band, ACS Photonics 5, 1726–1732. [CrossRef] [Google Scholar]
  34. Chang S., Guo X., Ni X. (2018) Optical metasurfaces: progress and applications, Annu. Rev. Mater. Res. 48, 279–302. [CrossRef] [Google Scholar]
  35. Aieta F., Genevet P., Yu N., Kats M.A., Gaburro Z., Capasso F. (2012) Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities, Nano Lett. 12, 1702–1706. [Google Scholar]
  36. Franke-Arnold S., Allen L., Padgett M. (2008) Advances in optical angular momentum, Laser Photonics Rev. 2, 299–313. [NASA ADS] [CrossRef] [Google Scholar]
  37. Yao A.M., Padgett M.J. (2011) Orbital angular momentum: Origins, behavior and applications, Adv. Opt. Photonics 3, 161–204. [NASA ADS] [CrossRef] [Google Scholar]
  38. Fang L., Padgett M.J., Wang J. (2017) Sharing a common origin between the rotational and linear Doppler effects, Laser Photonics Rev. 11, 1700183. [Google Scholar]
  39. Forbes A., Dudley A., McLaren M. (2016) Creation and detection of optical modes with spatial light modulators, Adv. Opt. Photonics 8, 200–227. [NASA ADS] [CrossRef] [Google Scholar]
  40. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Wang J. (2015) Optical communications using orbital angular momentum beams, Adv. Opt. 7, 66–106. [NASA ADS] [Google Scholar]
  41. Wang J. (2016) Advances in communications using optical vortices, Photonics Res. 4, B14–B28. [Google Scholar]
  42. Padgett M.J. (2017) Orbital angular momentum 25 years on, Opt. Express 25, 11265–11274. [CrossRef] [Google Scholar]
  43. Wang J., Yang J.Y., Fazal I.M., Ahmed N., Yan Y., Huang H., Willner A.E. (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6, 488–496. [NASA ADS] [CrossRef] [Google Scholar]
  44. Zhu L., Wang A., Chen S., Liu J., Mo Q., Du C., Wang J. (2017) Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber, Opt. Express 25, 25637–25645. [NASA ADS] [CrossRef] [Google Scholar]
  45. Ren Y., Li L., Wang Z., Kamali S.M., Arbabi E., Arbabi A., Yan Y. (2016) Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications, Sci. Rep. 6, 33306. [Google Scholar]
  46. Zhao Y., Wang A., Zhu L., Lv W., Xu J., Li S., Wang J. (2017) Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions, Opt. Lett. 42, 4699–4702. [NASA ADS] [CrossRef] [Google Scholar]
  47. Durnin J. (1987) Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4, 651–654. [NASA ADS] [CrossRef] [Google Scholar]
  48. Zhu L., Wang J. (2014) Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators, Sci. Rep. 4, 7441. [Google Scholar]
  49. Li S., Wang J. (2017) Adaptive free-space optical communications through turbulence using self-healing Bessel beams, Sci. Rep. 7, 43233. [Google Scholar]
  50. Paterson C., Smith R. (1996) Higher-order Bessel waves produced by axicon-type computer-generated holograms, Opt. Commun. 124, 121–130. [NASA ADS] [CrossRef] [Google Scholar]
  51. Litvin I.A., Ngcobo S., Naidoo D., Ait-Ameur K., Forbes A. (2014) Doughnut laser beam as an incoherent superposition of two petal beams, Opt. Lett. 39, 704–707. [NASA ADS] [CrossRef] [Google Scholar]
  52. Hakola A., Hakkarainen T., Tommila R., Kajava T. (2010) Energetic Bessel-Gauss pulses from diode-pumped solid-state lasers, J. Opt. Soc. Am. B 27, 2342–2349. [CrossRef] [Google Scholar]
  53. Meinzer N., Barnes W.L., Hooper I.R. (2014) Plasmonic meta-atoms and metasurfaces, Nat. Photonics 8, 889–898. [CrossRef] [Google Scholar]
  54. Zhao Z., Wang J., Li S., Willner A.E. (2013) Metamaterials-based broadband generation of orbital angular momentum carrying vector beams, Opt. Lett. 38, 932–934. [NASA ADS] [CrossRef] [Google Scholar]
  55. Du J., Wang J. (2015) Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array, Sci. Rep. 5, 9662. [Google Scholar]
  56. Wang X., Nie Z., Liang Y., Wang J., Li T., Jia B. (2018) Recent advances in optical vortex generation, Nanophotonics 7, 1533–1556. [Google Scholar]
  57. Chen S., Li Z., Zhang Y., Cheng H., Tian J. (2018) Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics, Adv. Opt. Mater. 6, 1800104. [CrossRef] [Google Scholar]
  58. Luo X. (2018) Subwavelength optical engineering with metasurface waves, Adv. Opt. Mater. 6, 1701201. [CrossRef] [Google Scholar]
  59. Chen M., Jiang L., Sha W.E.I. (2018) Orbital angular momentum generation and detection by geometric-phase based metasurfaces, Appl. Sci. 8, 362. [CrossRef] [Google Scholar]
  60. Huang Y.W., Rubin N.A., Ambrosio A., Shi Z., Devlin R.C., Qiu C.W., Capasso F. (2019) Versatile total angular momentum generation using cascaded J-plates, Opt. Exp. 27, 7469. [NASA ADS] [CrossRef] [Google Scholar]
  61. Veselago V.G. (1968) The electrodynamics of substances with simultaneously negative values of e and m, Sov. Phys. Usp. 10, 509–514. [CrossRef] [Google Scholar]
  62. Pendry J.B., Schurig D., Smith D.R. (2006) Controlling electromagnetic fields, Science 312, 1780–1782. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  63. Pendry J.B. (2000) Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969. [CrossRef] [Google Scholar]
  64. Soukoulis C.M., Wegener M. (2010) Optical metamaterials – More bulky and less lossy, Science 330, 1633–1634. [NASA ADS] [CrossRef] [Google Scholar]
  65. Zheludev N.I., Kivshar Y.S. (2012) From metamaterials to metadevices, Nat. Mater. 11, 917. [Google Scholar]
  66. Yuetal N. (2011) Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333–337. [Google Scholar]
  67. Ahmadivand A., Semmlinger M., Dong L., Gerislioglu B., Nordlande P., Halas N.J. (2019) Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms, Nano Lett. 19, 605–611. [Google Scholar]
  68. Yang S., Liu P., Yang M., Wang Q., Song J., Dong L. (2016) From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effect, Sci. Rep. 6, 21921. [Google Scholar]
  69. Ahmadivand A., Gerislioglu B., Ramezani Z. (2019) Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors, Nanoscale 11, 27, 13108–13116. [Google Scholar]
  70. Zhou X., Sheng L., Ling X. (2018) Photonic spin Hall efect enabled refractive index sensor using weak measurements, Sci. Rep. 8, 1221. [Google Scholar]
  71. Wu L., Chu H.S., Koh W.S., Li E.P. (2010) Highly sensitive graphene biosensors based on surface plasmon resonance, Opt. Express 18, 14395. [CrossRef] [Google Scholar]
  72. Zhou X., Ling X., Luo H., Wen S. (2012) Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett. 101, 251602. [NASA ADS] [CrossRef] [Google Scholar]
  73. Leyder C., Romanelli M., Karr J.P., Giacobino E., Liew T.C., Glazov M.M., Kavokin A.V., Malpuech G., Bramati A. (2007) Observation of the optical spin Hall effect, Nat. Phys. 3, 628. [Google Scholar]
  74. LaMountain T., Nelson J., Lenferink E.J., Amsterdam S.H., Murthy A.A., Zeng H., Marks T.J., Dravid V.P., Hersam M.C., Stern N.P. (2021) Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor, Nat. Commun. 12, 4530. [Google Scholar]
  75. Sedov E., Arakelian S., Kavokin A. (2021) Spontaneous symmetry breaking in persistent currents of spinor polaritons, Sci. Rep. 11, 22382. [Google Scholar]
  76. Puentes G., Waldherr G., Neumann P., Balasubramanian G., Wrachtrup J. (2014) Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamonds, Sci. Rep. 4, 4677. [Google Scholar]
  77. Puentes G. (2019) Spin-orbit angular momentum conversion in metamaterials and metasurfaces, Quantum Rep. 1, 91–106. Invited Review. [CrossRef] [Google Scholar]
  78. Puentes G., Neves L. (2018) Photonic discrete-time quantum walks and applications, Entropy 20, 731. [NASA ADS] [CrossRef] [Google Scholar]
  79. Vyas S., Kozawa Y., Sato S. (2014) Generation of radially polarized Bessel–Gaussian beams from c-cut Nd: YVO4 laser, Opt. Lett. 39, 1101–1104. [NASA ADS] [CrossRef] [Google Scholar]
  80. Naidoo D., Aït-Ameur K., Brunel M., Forbes A. (2012) Intra-cavity generation of superpositions of Laguerre–Gaussian beams, Appl. Phys. B 106, 683–690. [NASA ADS] [CrossRef] [Google Scholar]
  81. Akihiko I., Yuichi K., Shunichi S. (2010) Generation of hollow scalar and vector beams using a spot-defect mirror, J. Opt. Soc. Am. A 27, 2072–2077. [NASA ADS] [CrossRef] [Google Scholar]
  82. Lin D., Daniel J.M.O., Clarkson W.A. (2014) Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser, Opt. Lett. 39, 3903–3906. [NASA ADS] [CrossRef] [Google Scholar]
  83. Ngcobo S., Litvin I., Burger L., Forbes A. (2013) A digital laser for on-demand laser modes, Nat. Commun. 4, 2289. [NASA ADS] [CrossRef] [Google Scholar]
  84. Moulieras S., Lewenstein M., Puentes G. (2013) Entanglement engineering and topological protection by discrete-time quantum walks, J. Phys. B Atom. Mol. Opt. Phys. 46, 104005. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.