Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
Article Number 38
Number of page(s) 12
DOI https://doi.org/10.1051/jeos/2023035
Published online 25 July 2023
  1. Ali S.G., Talukdar B., Roy S.K. (2007) Bright solitons in asymmetrically trapped Bose-Einstein condensates, Acta Phys. Pol. A 111, 3, 289–297. [NASA ADS] [CrossRef] [Google Scholar]
  2. Ayela A.M., Edah G., Elloh C., Biswas A., Ekici M., Alzahrani A.K., Belic M.R. (2021) Chirped super-Gaussian and super-sech pulse perturbation of nonlinear Schrödinger’s equation with quadratic–cubic nonlinearity by variational principle, Phys. Lett. A 396, 127231. [NASA ADS] [CrossRef] [Google Scholar]
  3. Ayela A.M., Edah G., Biswas A., Zhou Q., Yildirim Y., Khan S., Alzahrani A.K., Belic M.R. (2022) Dynamical system of optical soliton parameters for anti–cubic and generalized anti–cubic nonlinearities with super–Gaussian and super–sech pulses, Opt. Appl. 52, 1, 117–128. [Google Scholar]
  4. Biswas A. (2001) Dispersion–managed solitons in optical fibres, J. Opt A Pure Appl. Op. 4, 1, 84–97. [Google Scholar]
  5. Chen Y. (1991) Variational principle for vector spatial solitons and nonlinear modes, Opt. Commun. 84, 5–6, 355–358. [NASA ADS] [CrossRef] [Google Scholar]
  6. Diakonos F.K., Schmelcher P. (2019) Super-Lagrangian and variational principle for generalized continuity equations, J. Phys. A. 52, 155–203. [Google Scholar]
  7. Ferreira M.F.S. (2018) Variational approach to stationary and pulsating dissipative optical solitons, IET Optoelectron. 12, 3, 122–125. [CrossRef] [Google Scholar]
  8. Green P., Milovic D., Sarma A.K., Lott D.A., Biswas A. (2010) Dynamics of super–sech solitons in optical fibers, J. Nonlinear Opt. Phys. Mater. 19, 2, 339–370. [NASA ADS] [CrossRef] [Google Scholar]
  9. Hirooka T., Wabnitz S. (2000) Nonlinear gain control of dispersion–managed soliton amplitude and collisions, Opt. Fiber Technol. 6, 2, 109–121. [NASA ADS] [CrossRef] [Google Scholar]
  10. Latas S., Ferreira M. (2010) Soliton explosion control by higher–order effects, Opt. Lett. 35, 1771–1773. [NASA ADS] [CrossRef] [Google Scholar]
  11. Mancas S., Choudhury S. (2007) A novel variational approach to pulsating solitons in the cubic–quintic Ginzburg-Lanadu equation, Theor. Math. Phys. 152, 1160–1172. [NASA ADS] [CrossRef] [Google Scholar]
  12. Pal D., Ali S.G., Talukdar B. (2008) Embedded soliton solutions: A variational study, Acta Phys. Pol. A. 113, 2, 707–712. [NASA ADS] [CrossRef] [Google Scholar]
  13. Rubinstein J., Wolansky G. (2004) A variational principle in optics, J. Opt. Soc. Am. B. 21, 11, 2164–2172. [NASA ADS] [CrossRef] [Google Scholar]
  14. Skarka V., Aleksic N.B. (2007) Dissipative optical solitons, Acta Phys. Pol. A 112, 5, 791–798. [NASA ADS] [CrossRef] [Google Scholar]
  15. Zhang J., Yu J.-Y., Pan N. (2005) Variational principles for nonlinear fiber optics, Chaos Solit. Fractals 4, 309–311. [CrossRef] [Google Scholar]
  16. Zhou Q. (2022) Influence of parameters of optical fibers on optical soliton interactions, Chin. Phys. Lett. 39, 1, 010501. [NASA ADS] [CrossRef] [Google Scholar]
  17. Ding C.C., Zhou Q., Triki H., Hu Z.H. (2022) Interaction dynamics of optical dark bound solitons for a defocusing Lakshmanan-Porsezian-Daniel equation, Opt. Exp. 30, 22, 40712–40727. [NASA ADS] [CrossRef] [Google Scholar]
  18. Wang H., Zhou Q., Liu W. (2022) Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation, J. Adv. Res. 38, 179–190. [CrossRef] [Google Scholar]
  19. Feng W., Chen L., Ma G., Zhou Q. (2022) Study on weakening optical soliton interaction in nonlinear optics, Nonlinear Dyn. 108, 3, 2483–2488. [CrossRef] [Google Scholar]
  20. Wang T.Y., Zhou Q., Liu W.J. (2022) Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers, Chin. Phys. B 31, 2, 020501. [NASA ADS] [CrossRef] [Google Scholar]
  21. Zhou Q., Huang Z., Sun Y., Triki H., Liu W., Biswas A. (2023) Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity, Nonlinear Dyn. 111, 6, 5757–5765. [CrossRef] [Google Scholar]
  22. Ding C.C., Zhou Q., Triki H., Sun Y., Biswas A. (2023) Dynamics of dark and anti-dark solitons for the x-nonlocal Davey-Stewartson II equation, Nonlinear Dyn. 111, 3, 2621–2629. [CrossRef] [Google Scholar]
  23. Zhong Y., Triki H., Zhou Q. (2022) Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential, Commun. Theoret. Phys. 75, 025003. [Google Scholar]
  24. Zhou Q., Triki H., Xu J., Zeng Z., Liu W., Biswas A. (2022) Perturbation of chirped localized waves in a dual-power law nonlinear medium, Chaos, Solitons & Fractals 160, 112198. [NASA ADS] [CrossRef] [Google Scholar]
  25. Zhou Q., Zhong Y., Triki H., Sun Y., Xu S., Liu W., Biswas A. (2022) Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity, Chin. Phys. Lett. 39, 4, 044202. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.