Open Access
Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 2, 2023
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/jeos/2023034 | |
Published online | 20 July 2023 |
- Jahn W., Ferrari M., Hugot E. (2017) Innovative focal plane design for large space telescope using freeform mirrors, Optica 4, 10, 1188–1195. https://doi.org/10.1364/optica.4.001188. [NASA ADS] [CrossRef] [Google Scholar]
- Liu C., Gross H. (2018) Numerical optimization strategy for multi-lens imaging systems containing freeform surfaces, Appl. Opt. 57, 50, 5758–5768. https://doi.org/10.1364/AO.57.005758. [NASA ADS] [CrossRef] [Google Scholar]
- Schmidt S., Thiele S., Toulouse A., Bösel C., Tiess T., Herkommer A., Gross H., Giessen H. (2020) Tailored micro-optical freeform holograms for integrated complex beam shaping, Optica 7, 10, 1279–1286. https://doi.org/10.1364/optica.395177. [NASA ADS] [CrossRef] [Google Scholar]
- Rolland J.P., Davies M.A., Suleski T.J., Evans C., Bauer A., Lambropoulos J.C., Falaggis K. (2021) Freeform optics for imaging, Optica 8, 2, 161–176. https://doi.org/10.1364/optica.413762. [NASA ADS] [CrossRef] [Google Scholar]
- Pagotto C.R., Duduch J.G., Jasinevicius R.G. (2014) Ductile behavior of optical glass in single point diamond turning, Rem: Rev. Esc. Minas 67, 2, 2, 167–172. https://doi.org/10.1590/s0370-44672014000200006. [CrossRef] [Google Scholar]
- Rumpel A. (2016) Ultra-Präzisionsschleifen: wenn sich Glas wie Eiscreme verhält, Photonik 6, 42–45. [Google Scholar]
- Schindler C., Köhler T., Roth E. (2017) Freeform Optics: current challenges for future serial production, in Optifab 2017, 16–19 October, Rochester, NY, USA. https://doi.org/10.1117/12.2280003. [Google Scholar]
- Henkel S., Schwager A.-M., Bliedtner J., Götze K., Rädlein E., Schulze C., Gerhardt M., Fuhr M. (2017) New surface smoothing technologies for manufacturing of complex shaped glass components, in Optifab 2017, 16–19 October, Rochester, NY, USA. https://doi.org/10.1117/12.2277189. [Google Scholar]
- Henkel S., Barz A., Bliedtner J., Lampert C., Gräfe D., Kleinen K., Kleinen C. (2019) Development of adjustable multifunctional optical elements for deflection, splitting, and shaping of light beams, in Sixth European Seminar on Precision Optics Manufacturing, 9–10 April, Teisnach, Germany. https://doi.org/10.1117/12.2526505. [Google Scholar]
- Schulze C., Henkel S., Bliedtner J. (2020) Ultra-fine grinding of inorganic non-metallic materials using various types of bonds and processing strategies, EPJ Web Conf. 238, 03011. https://doi.org/10.1051/epjconf/202023803011. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schinhaerl M., Smith G., Stamp R., Rascher R., Smith L., Pitschke E., Sperber P., Geiss A. (2008) Mathematical modelling of influence functions in computer-controlled polishing: Part I, Appl. Math. Model. 32, 12, 2888–2906. https://doi.org/10.1016/j.apm.2007.10.013. [CrossRef] [Google Scholar]
- Schinhaerl M., Smith G., Stamp R., Rascher R., Smith L., Pitschke E., Sperber P., Geiss A. (2008) Mathematical modelling of influence functions in computer-controlled polishing: Part II, Appl. Math. Model. 32, 12, 2907–2924. https://doi.org/10.1016/j.apm.2007.10.012. [CrossRef] [Google Scholar]
- Cao Z.C., Cheung C.F., Liu M.Y. (2018) Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces, Opt. Express 26, 2, 2065–2078. https://doi.org/10.1364/OE.26.002065. [NASA ADS] [CrossRef] [Google Scholar]
- Bliedtner J., Müller H., Barz A. (2013) Lasermaterialbearbeitung, Carl Hanser Verlag, Munich, German. [CrossRef] [Google Scholar]
- Heidrich S., Willenborg E., Weingarten C., Temmler A. (2015) Laser polishing and laser form correction of fused silica optics, Materialwiss. Werkstofftech. 46, 7, 668–674. https://doi.org/10.1002/mawe.201500319. [CrossRef] [Google Scholar]
- Weingarten C., Schmickler A., Willenborg E., Wissenbach K., Poprawe R. (2017) Laser polishing and laser shape correction of optical glass, J. Laser Appl. 29, 1, 011702. https://doi.org/10.2351/1.4974905. [NASA ADS] [CrossRef] [Google Scholar]
- Arnold T., Boehm G., Eichentopf I.-M., Janietz M., Meister J., Schindler A. (2010) Plasma jet machining. Vak. Forsch. Prax. 22, 4, 10–16. https://doi.org/10.1002/vipr.201000423. [Google Scholar]
- Arnold T., Boehm G., Paetzelt H. (2016) New freeform manufacturing chains based on atmospheric plasma jet machining, J. Eur. Opt. Society-Rapid Publ. 11, 16002. https://doi.org/10.2971/jeos.2016.16002. [NASA ADS] [CrossRef] [Google Scholar]
- Siewert F., Zeschke T., Arnold T., Paetzelt H., Yashchuk V.V. (2016) Linear chirped slope profile for spatial calibration in slope measuring deflectometry, Rev. Sci. Instrum. 87, 5, 051907. https://doi.org/10.1063/1.4950737. [CrossRef] [Google Scholar]
- Yadav H.N.S., Kumar M., Kumar A., Das M. (2023) Plasma polishing processes applied on optical materials: A review, J. Micromanuf. 6, 1, 27–39. https://doi.org/10.1177/25165984211038882. [CrossRef] [Google Scholar]
- Jin Y., Su X., Wang B., Li D., Ding F., Qiao Z. (2021) The design and analysis of a novel low power atmospheric plasma jet torch for optical fabrication, J. Manuf. Process. 69, 422–433. https://doi.org/10.1016/j.jmapro.2021.07.054. [CrossRef] [Google Scholar]
- Müller H., Waak T., Birnbaum U., Böhm G., Arnold T. (2022) Atmospheric plasma jet processing for figure error correction of an optical element made from S-BSL7, J. Eur. Opt. Society-Rapid Publ. 18, 1, 4. https://doi.org/10.1051/jeos/2022003. [CrossRef] [EDP Sciences] [Google Scholar]
- Paetzelt H., Böhm G., Arnold T. (2013) Plasma jet polishing of rough fused silica surfaces, in 13th EUSPEN International Conference, Berlin, Germany. https://www.euspen.eu/knowledge-base/ICE13376.pdf. [Google Scholar]
- Arnold T., Maiwald A., Böhm G., Erhrhard M., Zimmer K. (2019) Optical freeform generation by laser machining and plasma-assisted polishing, EPJ Web Conf. 215, 03003. https://doi.org/10.1051/epjconf/201921503003. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Li R., Li Y., Deng H. (2022) Plasma-induced atom migration manufacturing of fused silica, Precis. Eng. 76, 305–313. https://doi.org/10.1016/j.precisioneng.2022.04.005. [CrossRef] [Google Scholar]
- Nowak K.M., Baker H.J., Hall D.R. (2006) Efficient laser polishing of silica micro-optic components, Appl. Opt. 45, 1, 162–171. https://doi.org/10.1364/AO.45.000162. [NASA ADS] [CrossRef] [Google Scholar]
- Hildebrand J., Hecht K., Bliedtner J., Müller H. (2011) Laser beam polishing of quartz glass surfaces, Phys. Procedia 12, 452–461. https://doi.org/10.1016/j.phpro.2011.03.056. [Google Scholar]
- Hecht K. (2012) Entwicklung eines Laserstrahlpolierverfahrens für Quarzglasoberflächen, Universitätsverlag Ilmenau, Ilmenau. [Google Scholar]
- Temmler A., Willenborg E., Wissenbach K. (2012) Laser polishing, in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, 23–26 January, San Francisco, CA, USA. https://doi.org/10.1117/12.906001. [Google Scholar]
- Zhao L., Cheng J., Chen M., Yuan X., Liao W., Liu Q., Yang H., Wang H. (2019) Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing, Int. J. Extrem. Manuf. 1, 3, 035001. https://doi.org/10.1088/2631-7990/ab3033. [CrossRef] [Google Scholar]
- Corning® HPFS® 7979, 7980, 8655 Fused Silica. 2015 [cited 2022 august 19th]. Available from: https://www.advancedoptics.com/CorningFusedSilicaTechnicalDataSheet.pdf. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.