EOSAM 2022
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
Article Number 32
Number of page(s) 5
DOI https://doi.org/10.1051/jeos/2023029
Published online 08 June 2023
  1. Hüser L., Lehmann P. (2020) Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements, Appl. Opt. 59, 1695. [CrossRef] [Google Scholar]
  2. Perrin S., Donie Y.J., Montgomery P., Gomard G., Lecler S. (2020) Compensated microsphere-assisted interference microscopy, Phys. Rev. Appl. 13, 1. [CrossRef] [Google Scholar]
  3. Wang F., Liu L., Yu P., Liu Z., Yu H., Wang Y., Li W.J. (2016) Three-dimensional super-resolution morphology by near-field assisted white-light interferometry, Sci. Rep. 6, 24703. [NASA ADS] [CrossRef] [Google Scholar]
  4. Wang Z., Guo W., Li L., Luk’yanchuk B., Khan A., Liu Z., Chen Z., Hong M. (2011) Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope, Nat. Commun. 2, 218. [NASA ADS] [CrossRef] [Google Scholar]
  5. Darafsheh A., Walsh G.F., Dal Negro L., Astratov V.N. (2012) Optical super-resolution by high-index liquid-immersed microspheres, Appl. Phys. Lett. 101, 141128. [NASA ADS] [CrossRef] [Google Scholar]
  6. Yang H., Trouillon R., Huszka G., Gijs M.A. (2016) Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet, Nano Lett. 16, 4862. [NASA ADS] [CrossRef] [Google Scholar]
  7. Darafsheh A. (2021) Photonic nanojets and their applications, J. Phys.: Photon. 3, 022001. [NASA ADS] [CrossRef] [Google Scholar]
  8. Lecler S., Perrin S., Leong-Hoi A., Montgomery P. (2019) Photonic jet lens, Sci. Rep. 9, 1. [Google Scholar]
  9. Ben-Aryeh Y. (2016) Increase of resolution by use of microspheres related to complex Snell’s law, J. Opt. Soc. Am. A 33, 2284. [NASA ADS] [CrossRef] [Google Scholar]
  10. Zhou S., Deng Y., Zhou W., Yu M., Urbach H.P., Wu Y. (2017) Effects of whispering gallery mode in microsphere super-resolution imaging, Appl. Phys. B: Lasers Opt. 123, 1. [NASA ADS] [CrossRef] [Google Scholar]
  11. Hüser L., Pahl T., Künne M., Lehmann P. (2022) Microsphere assistance in interference microscopy with high numerical aperture objective lenses, J. Opt. Microsyst. 2, 044501. [Google Scholar]
  12. Darafsheh A. (2022) Microsphere-assisted microscopy, J. Appl. Phys. 131, 031102. [NASA ADS] [CrossRef] [Google Scholar]
  13. Pahl T., Hagemeier S., Künne M., Yang D., Lehmann P. (2020) 3D modeling of coherence scanning interferometry on 2D surfaces using FEM, Opt. Express 28, 39807. [CrossRef] [Google Scholar]
  14. Lehmann P., Tereschenko S., Xie W. (2016) Fundamental aspects of resolution and precision in vertical scanning white-light interferometry, Surf. Topogr.: Metrol. Prop. 4, 024004. [NASA ADS] [CrossRef] [Google Scholar]
  15. Wang Z., Luk’yanchuk B. (2019) Super-resolution imaging and microscopy by dielectric particle-lenses, Springer International Publishing, Cham, pp. 371–406. ISBN 978-3-030-21722-8. [Google Scholar]
  16. Pahl T., Hüser L., Hagemeier S., Lehmann P. (2022) FEM-based modeling of microsphere-enhanced interferometry, Light: Adv. Manuf. 3, 1. [Google Scholar]
  17. Lehmann P., Künne M., Pahl T. (2021) Analysis of interference microscopy in the spatial frequency domain, J. Phys.: Photon. 3, 1. [Google Scholar]
  18. Coupland J., Mandal R., Palodhi K., Leach R. (2013) Coherence scanning interferometry: Linear theory of surface measurement, Appl. Opt. 52, 3662. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.