J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 28
Number of page(s) 9
Published online 24 May 2023
  1. Bustamante C.J., Chemla Y.R., Liu S., Wang M.D. (2021) Optical tweezers in single-molecule biophysics, Nat. Rev. Methods Primers 1, 25. [CrossRef] [Google Scholar]
  2. Arbore C., Perego L., Sergides M., Capitanio M. (2019) Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction, Biophys. Rev. 11, 765–782. [Google Scholar]
  3. Favre-Bulle I.A., Scott E.K. (2022) Optical tweezers across scales in cell biology, Trends Cell Biol. 32, 932–946. [CrossRef] [Google Scholar]
  4. Gieseler J., Gomez-Solano J.R., Magazzù A., Perez-Castillo I., Perez-Garcia L., Gironella-Torrent M., Viader-Godoy X., Ritort F., Pesce G., Arzola A.V., Volke-Sepúlveda K., Volpe G. (2021) Optical tweezers – from calibration to applications: a tutorial, Adv. Optics Photon. 13, 74. [CrossRef] [Google Scholar]
  5. Berg-Sørensen K., Flyvbjerg H. (2004) Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75, 3, 594–612. [CrossRef] [Google Scholar]
  6. Neuman K.C., Block S.M. (2004) Optical trapping, Rev. Sci. Instrum. 75, 9, 2787–2809. [NASA ADS] [CrossRef] [Google Scholar]
  7. Thalhammer G., Obmascher L., Ritsch-Marte M. (2015) Direct measurement of axial optical forces, Optics Exp. 23, 6112. [NASA ADS] [CrossRef] [Google Scholar]
  8. Bui A.A.M., Kashchuk A.V., Balanant M.A., Nieminen T.A., Rubinsztein-Dunlop H., Stilgoe A.B. (2018) Calibration of force detection for arbitrarily shaped particles in optical tweezers, Sci. Rep. 8, 10798. [NASA ADS] [CrossRef] [Google Scholar]
  9. Visscher K., Gross S.P., Block S.M. (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing, IEEE J. Quantum Electron. 2, 1066–1076. [NASA ADS] [CrossRef] [Google Scholar]
  10. Singer W., Bernet S., Hecker N., Ritsch-Marte M. (2000) Three-dimensional force calibration of optical tweezers, J. Mod. Opt. 47, 2921–2931. [NASA ADS] [CrossRef] [Google Scholar]
  11. Le Gall A., Perronet K., Dulin D., Villing A., Bouyer P., Visscher K., Westbrook N. (2010) Simultaneous calibration of optical tweezers spring constant and position detector response, Optics Exp. 18, 25, 26469–26474. [NASA ADS] [CrossRef] [Google Scholar]
  12. Richly M.U., Türkcan S., Le Gall A., Fiszman N., Masson J.-B., Westbrook N., Perronet K., Alexandrou A. (2013) Calibrating optical tweezers with Bayesian inference, Optics Exp. 21, 25, 31578–31590. [NASA ADS] [CrossRef] [Google Scholar]
  13. Argun A., Thalheim T., Bo S., Cichos F., Volpe G. (2020) Enhanced force-field calibration via machine learning, Appl. Phys. Rev. 7, 041404. [Google Scholar]
  14. Gittes F., Schmidt C.F. (1998) Interference model for back-focal-plane displacement detection in optical tweezers, Opt. Lett. 23, 7–9. [NASA ADS] [CrossRef] [Google Scholar]
  15. Shipley F.B., Carter A.R. (2012) Back-scattered detection yields viable signals in many conditions, Optics Exp. 20, 9581. [NASA ADS] [CrossRef] [Google Scholar]
  16. Keyser U.F., van der Does J., Dekker C., Dekker N.H. (2006) Optical tweezers for force measurements on DNA in nanopores, Rev. Sci. Instrum. 77, 105105. [NASA ADS] [CrossRef] [Google Scholar]
  17. Sischka A., Kleimann C., Hachmann W., Schäfer M.M., Seuffert I., Tönsing K., Anselmetti D. (2008) Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores, Rev. Sci. Instrum. 79, 063702. [NASA ADS] [CrossRef] [Google Scholar]
  18. Huang L., Guo H., Li K., Chen Y., Feng B., Li Z.-Y. (2013) Three dimensional force detection of gold nanoparticles using backscattered light detection, J. Appl. Phys. 113, 113103. [NASA ADS] [CrossRef] [Google Scholar]
  19. Samadi A., Masoumeh Mousavi S., Hajizadeh F., Reihani S.N.S. (2019) Backscattering-based detection scheme for dark-field optical tweezers, J. Opt. Soc. Am. B 36, 1587. [NASA ADS] [CrossRef] [Google Scholar]
  20. Neuman K.C., Abbondanzieri E.A., Block S.M. (2005) Measurement of the effective focal shift in an optical trap, Opt. Lett. 30, 1318. [NASA ADS] [CrossRef] [Google Scholar]
  21. Mahmoudi A., Reihani S.N.S. (2010) Phase contrast optical tweezers, Optics Exp. 18, 17, 17983–17996. [NASA ADS] [CrossRef] [Google Scholar]
  22. Hansen P.M., Tolic-Nørrelykke I.M., Flyvbjerg H., Berg-Sørensen K. (2006) tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers, Comput. Phys. Commun. 174, 6, 518–520. [NASA ADS] [CrossRef] [Google Scholar]
  23. Berg-Sørensen K., Oddershede L., Florin E.-L., Flyvbjerg H. (2003) Unintended filtering in a typical photodiode detection system for optical tweezers, J. Appl. Phys. 93, 6, 3167–3176. [CrossRef] [Google Scholar]
  24. Perkins T.T. (2009) Optical traps for single molecule biophysics: a primer, Laser Photon. Rev. 3, 1–2, 203–220. [NASA ADS] [CrossRef] [Google Scholar]
  25. Vermeulen K.C., Wuite G.J.L., Stienen G.J.M., Schmidt C.F. (2006) Optical trap stiffness in the presence and absence of spherical aberrations, Appl. Opt. 45, 1812. [Google Scholar]
  26. Rohrbach A., Stelzer E.H.K. (2002) Trapping forces, force constants, and potential depths for dielectric spheres in the presence pf spherical aberrations, Appl. Opt. 41, 13, 2494–2507. [Google Scholar]
  27. Hugonin J.P., Besbes M., Lalanne P. (2008) Hybridization of electromagnetic numerical methods through the G-matrix algorithm, Opt. Lett. 33, 14, 1590–1592. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.