J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 27
Number of page(s) 10
Published online 24 May 2023
  1. Medina A. (1992) Three dimensional camera and range finder, US5081530A, United States. [Google Scholar]
  2. Grauer Y., Sonn E. (2015) Active gated imaging for automotive safety applications, in: Video surveillance and transportation imaging applications, Vol. 9407, SPIE, pp. 112–129. [NASA ADS] [Google Scholar]
  3. Gruber T., Julca-Aguilar F., Bijelic M., Ritter W., Dietmayer K., Heide F. (2019) Gated2Depth: Real-time dense lidar from gated images, arXiv., [Google Scholar]
  4. Göhler B., Lutzmann P. (2016) Review on short-wavelength infrared laser gated-viewing at fraunhofer iosb, Opt. Eng. 56, 031203. [CrossRef] [Google Scholar]
  5. Willitsford A.H., Brown D.M., Baldwin K., Hanna R.T., Marinello L. (2021) Range-gated active short-wave infrared imaging for rain penetration, Opt. Eng. 60, 013103. [NASA ADS] [CrossRef] [Google Scholar]
  6. Donoho D.L. (2006) Compressed sensing, IEEE Trans. Inf. Theory 52, 1289. [CrossRef] [Google Scholar]
  7. Duarte M.F., Davenport M.A., Takhar D., Laska J.N., Sun T., Kelly K.F., Baraniuk R.G. (2008) Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25, 83. [NASA ADS] [CrossRef] [Google Scholar]
  8. Higham C.F., Murray-Smith R., Padgett M.J., Edgar M.P. (2018) Deep learning for real-time single-pixel video, Sci. Rep. 8, 2369. [Google Scholar]
  9. Ren X., Li L., Dang E. (2011) Compressive sampling and gated viewing three-dimensional laser radar, J. Phys.: Conf. Ser. 276, 012142. [NASA ADS] [CrossRef] [Google Scholar]
  10. Li L., Wu L., Wang X., Dang E. (2012) Gated viewing laser imaging with compressive sensing, Appl. Opt. 51, 2706. [Google Scholar]
  11. Sun M.J., Edgar M.P., Gibson G.M., Sun B., Radwell N., Lamb R., Padgett M.J. (2016) Single-pixel three dimensional imaging with time-based depth resolution, Nat. Commun. 7, 12010. [NASA ADS] [CrossRef] [Google Scholar]
  12. Gong W., Zhao C., Yu H., Chen M., Xu W., Han S. (2016) Three-dimensional ghost imaging lidar via sparsity constraint, Sci. Rep. 6, 26133. [NASA ADS] [CrossRef] [Google Scholar]
  13. Li L., Xiao W., Jian W. (2014) Three-dimensional imaging reconstruction algorithm of gated-viewing laser imaging with compressive sensing, Appl. Opt. 53, 7992. [Google Scholar]
  14. Howland G.A., Dixon P.B., Howell J.C. (2011) Photon counting compressive sensing laser radar for 3D imaging, Appl. Opt. 50, 5917. [Google Scholar]
  15. Howland G.A., Lum D.J., Ware M.R., Howell J.C. (2013) Photon counting compressive depth mapping, Opt. Express 21, 23822. [NASA ADS] [CrossRef] [Google Scholar]
  16. Radwell N., Johnson S.D., Edgar M.P., Higham C.F., Murray-Smith R., Padgett M.J. (2019) Deep learning optimized single-pixel lidar, Appl. Phys. Lett. 115, 231101. [NASA ADS] [CrossRef] [Google Scholar]
  17. Bashkansky M., Park S.D., Reintjes J. (2021) Single pixel structured imaging through fog, Appl. Opt. 60, 4793. [Google Scholar]
  18. Quero C.O., Durini D., Ramos-Garcia R., Rangel-Magdaleno J., Martinez-Carranza J. (2020) Evaluation of a 3D imaging vision system based on a single-pixel InGaAs detector and the time-of-flight principle for drones, in: Three-dimensional imaging, visualization, and display, Vol. 11402, SPIE, p. 114020T. [NASA ADS] [Google Scholar]
  19. Davenport M.A., Duarte M.F., Wakin M.B., Laska J.N., Takhar D., Kelly K.F., Baraniuk R.G. (2007) The smashed filter for compressive classification and target recognition, in: Computational imaging V, Vol. 6498, SPIE, p. 64980H. [NASA ADS] [CrossRef] [Google Scholar]
  20. Jiao S. (2018) Fast object classification in single-pixel imaging, in: Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), Vol. 10827, SPIE, p. 108271O. [NASA ADS] [Google Scholar]
  21. Zhang Z., Li X., Zheng S., Yao M., Zheng G., Zhong J. (2020) Image-free classification of fast-moving objects using learned structured illumination and single-pixel detection, Opt. Express 28, 13269. [NASA ADS] [CrossRef] [Google Scholar]
  22. Yang Z., Bai Y.M., Sun L.D., Huang K.X., Liu J., Ruan D., Li J.L. (2021) SP-ILC: Concurrent single-pixel imaging, object location, and classification by deep learning, Photonics 8, 400. [NASA ADS] [CrossRef] [Google Scholar]
  23. Field D.J. (1987) Relations between the statistics of natural images and the response properties of cortical cells, J. Opt. Soc. Am. A 4, 2379. [NASA ADS] [CrossRef] [Google Scholar]
  24. IOS (1994) Information technology – Digital compression and coding of continuous-tone still images: Requirements and guidelines ISO/IEC 10918-1:1994, International Electrotechnical Commission (IEC), Genf. [Google Scholar]
  25. driveU. DENSE dataset, Universiteat Ulm, Ulm. Access: 15.02.2023, [Google Scholar]
  26. Theis L., Shi W., Cunningham A., Huszár F. (2017) Lossy image compression with compressive autoencoders, arXiv., [Google Scholar]
  27. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. (2004) Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13, 600. [NASA ADS] [CrossRef] [Google Scholar]
  28. DIN e.V.(2022) Safety of laser products - Part 1: Equipment classification and requirements (IEC 60825-1:2014) DIN EN 60825-1:2022-07, Beuth-Verlag, Berlin. [Google Scholar]
  29. Hamamatsu Photonics K.K. Hamamatsu InGaAs photodiode 66854-01, Hamamatsu Photonics K.K., Hamamatsu. Access: 15.02.2023, [Google Scholar]
  30. Christnacher F., Schertzer S., Metzger N., Bacher E., Laurenzis M., Habermacher R. (2015) Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments, Opt. Express 23, 32897. [NASA ADS] [CrossRef] [Google Scholar]
  31. Tobin R., Halimi A., McCarthy A., Soan P.J., Buller G.S. (2021) Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single photon lidar, Sci. Rep. 11, 11236. [Google Scholar]
  32. NREL. Reference Air Mass 1.5 Spectra, NREL, Golden. Access: 15.02.2023, [Google Scholar]
  33. Sun B., Edgar M.P., Bowman R., Vittert L.E., Welsh S., Bowman A., Padgett M.J. (2013) Differential computational ghost imaging, Optica Publishing Group, Arlington, Virginia, OSA Technical Digest (online), p. CTu1C.4. [Google Scholar]
  34. Soldevila F., Clemente P., Tajahuerce E., Uribe-Patarroyo N., Andrés P., Lancis J. (2016) Computational imaging with a balanced detector, Sci. Rep. 6, 29181. [NASA ADS] [CrossRef] [Google Scholar]
  35. Laurenzis M., Poyet J.M., Lutz Y., Matwyschuk A., Christnacher F. (2012) Range gated imaging with speckle-free and homogeneous laser illumination, in: Electro-optical remote sensing, photonic technologies, and applications VI, Vol. 8542, SPIE, p. 854203. [NASA ADS] [CrossRef] [Google Scholar]
  36. Laurenzis M., Lutz Y., Christnacher F., Matwyschuk A., Poyet J.M. (2012) Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry, Opt. Eng. 51, 061302. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.