J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
Article Number 12
Number of page(s) 4
Published online 10 March 2023
  1. Baiz C.R., Reppert M., Tokmakoff A. (2013) Introduction to Protein 2D IR Spectroscopy, in: Fayer M.D. (ed), Ultrafast infrared vibrational spectroscopy, Taylor & Francis, New York, pp. 361–403. [Google Scholar]
  2. Khalil M., Demirdöven N., Tokmakoff A. (2003) Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution, J. Phys. Chem. A 107, 5258. [NASA ADS] [CrossRef] [Google Scholar]
  3. Petti M.K., Lomont J.P., Maj M., Zanni M.T. (2018) Two-dimensional spectroscopy is being used to address core scientific questions in biology and materials science, J. Phys. Chem. B 122, 1771. [NASA ADS] [CrossRef] [Google Scholar]
  4. Ghosh A., Ostrander J.S., Zanni M.T. (2017) Watching proteins wiggle: Mapping structures with two-dimensional infrared spectroscopy, Chem. Rev. 117, 10726. [CrossRef] [Google Scholar]
  5. Kolesnichenko P.V., Tollerud J.O., Davis J.A. (2019) Background-free time-resolved coherent Raman spectroscopy (CSRS and CARS): Heterodyne detection of low-energy vibrations and identification of excited-state contributions, APL Photon. 4, 56102. [Google Scholar]
  6. Stauffer H.U., Miller J.D., Slipchenko M.N. (2014) Time-and frequency-dependent model of time-resolved Coherent Anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse, J. Chem. Phys. 140, 24316. [Google Scholar]
  7. Heidt A.M., Rothhardt J., Hartung A., Bartelt H., Rohwer E.G., Limpert J., Tünnermann A. (2011) High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber, Opt. Exp. 19, 3775. [NASA ADS] [CrossRef] [Google Scholar]
  8. Spangenberg D.M., Rohwer E., Brügmann M., Feurer T. (2020) Extending time-domain ptychography to generalized phase-only transfer functions, Opt. Lett. 45, 2, 300–303. [NASA ADS] [CrossRef] [Google Scholar]
  9. Viljoen R., Neethling P., Spangenberg D., Heidt A., Frey H.M., Feurer T., Rohwer E. (2020) Implementation of temporal ptychography algorithm, i2PIE, for improved single-beam coherent anti-Stokes Raman scattering measurements, JOSA B 37, 11, A259–A265. [NASA ADS] [CrossRef] [Google Scholar]
  10. Rampur A., Spangenberg D.M., Sierro B., Hänzi P., Klimczak M., Heidt A.M. (2021) Perspective on the next generation of ultra-low noise fiber supercontinuum sources and their emerging applications in spectroscopy, imaging, and ultrafast photonics, Appl. Phys. Lett. 118, 240504. [NASA ADS] [CrossRef] [Google Scholar]
  11. Motzkus M., Brückner L., Buckup T. (2015) Enhancement of coherent anti-Stokes Raman signal via tailored probing in spectral focusing, Opt. Lett. 40, 22, 5204–5207. [NASA ADS] [CrossRef] [Google Scholar]
  12. Perry J.W., Woodward A.M., Stephenson J.C. (1986) Picosecond Coherent Anti-Stokes Raman Scattering (CARS) study of vibrational dephasing of carbon disulfide and benzene in solution, Laser Appl. Chem. Biophys. 620, 7. [Google Scholar]
  13. Lee Y.J., Cicerone M.T. (2008) Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy, Appl. Phys. Lett. 92, 041108. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.