Issue |
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Advancing Society with Light, a special issue from general congress ICO-25-OWLS-16-Dresden-Germany-2022
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/jeos/2023008 | |
Published online | 10 March 2023 |
Short Communication
Novel time-resolved CARS implementation for application in microscopy
1
Laser Research Institute, Stellenbosch University, 7600 Stellenbosch, South Africa
2
Institute for Applied Physics, University of Bern, 3012 Bern, Switzerland
* Corresponding author: pietern@sun.ac.za
Received:
12
December
2022
Accepted:
27
February
2023
Vibrational dephasing times for benzene and carbon disulfide are measured using a custom single-beam Coherent Anti-Stokes Raman Spectroscopy (CARS) setup. A femtosecond oscillator is used to pump a polarization maintaining all normal dispersion photonic crystal fibre (PM-ANDi-PCF) to generate a broad band supercontinuum, covering a spectral region from 680 to 900 nm. The dispersion properties of the PM-ANDi-PCF ensures the supercontinuum is stable and there exists a fixed phase relationship between the spectral components of the supercontinuum. This enables its temporal compression using i2PIE, implemented using a liquid crystal spatial light modulator (SLM) in a 4f geometry. This SLM is also used to shape the pulse spectrally and temporally. With this setup we could demonstrate time-resolved CARS, measuring the vibrational relaxation times of a carbon disulfide (CS2)/benzene mixture, and eliminate the non-resonant background completely. The main advantage of this setup is the fact that it is a single beam technique, eliminating the requirement for aligning the overlap of the pump and probe, both spatially and temporally, in the focal plane of the microscope. The strengths and limitations of the technique are highlighted and the route to time-resolved/background free vibrational microscopy is proposed.
Key words: Time resolved CARS microscopy / i2PIE / Vibrational dephasing
© The Author(s), published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.