Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 13
Number of page(s) 11
Published online 13 March 2023
  1. Aïssa B., Abdallah A.A., Zakaria Y., Kivambe M.M., Samara A., Shetty A.R., Cattin J., Haschke J., Boccard M., Ballif C. (2019) Impact of the oxygen content on the optoelectronic properties of the indiumtin-oxide based transparent electrodes for silicon heterojunction solar cells, AIP Conf. Proc. 2147, 030001. [CrossRef] [Google Scholar]
  2. Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K. (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energ. 2, 17032. [NASA ADS] [CrossRef] [Google Scholar]
  3. Fujiwara H., Kondo M. (2005) Effects of carrier concentration on the dielectric function of ZnO: Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption, Phys. Rev. B 71, 075109. [NASA ADS] [CrossRef] [Google Scholar]
  4. Farhan M.S., Zalnezhad E., Bushroa A.R., Sarhan A.A.D. (2013) Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature, Int. J. Precis. Eng. Manuf. 14, 8, 1465–1469. [CrossRef] [Google Scholar]
  5. Sakthivel P., Asaithambi S., Karuppaiah M., Sheikfareed S., Yuvakkumar R., Ravi G. (2019) Different rare earth (Sm, La, Nd) doped magnetron sputtered CdO thin films for optoelectronic applications, J. Mater. Sci.: Mater. Electron. 30, 9999–10012. [CrossRef] [Google Scholar]
  6. Grundmann M. (2015) Karl Bädeker (1877–1914) and the discovery of transparent conductive materials, Phys. Status Solidi. 212, 1409–1426. [NASA ADS] [CrossRef] [Google Scholar]
  7. Mohamed S.H., Zhao H., Romanus H., El-Hossary F.M., Abo El-Kassem M., Awad M.A., Rabia M., Lei Y. (2020) Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications, Mater. Sci. Semicond. Process. 105, 104704. [Google Scholar]
  8. Mozumder M.S., Mourad A.I., Pervez H., Surkatti R. (2019) Recent developments in multifunctional coatings for solar panel applications: A review, Sol. Energy Mater. Sol. Cells 189, 75–102. [Google Scholar]
  9. Pan Z., Cao S., Li J., Du Z., Cheng F. (2019) Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size, J. Membr. Sci. 572, 596. [Google Scholar]
  10. El-Hossary F.M., Abd El-Rahman A.M., Raaif M., Shuxin Q., Zhao J., Manfred F.M., Abo El-kassem M. (2018) Effect of DC-pulsed magnetron sputtering power on structural, tribological and biocompatibility of Ti–Zr–N thin film, Appl. Phys. A 124, 42. [NASA ADS] [CrossRef] [Google Scholar]
  11. El-Hossary F.M., Mohamed S.H., Noureldein E.A., Abo El-Kassem M. (2021) ZnO thin films prepared by RF plasma chemical vapour transport for self-cleaning and transparent conducting coatings, Bull. Mater. Sci. 44, 82. [CrossRef] [Google Scholar]
  12. Abd El-Moula A.A., El-Hossary F.M., Raaif M., Thabet A., Abo El-Kassem M. (2021) Effect of Cu metallic interlayer thickness on optoelectronic properties of TiO2-based multilayers deposited by DC pulsed magnetron sputtering, J. Electron. Mater. 50, 5, 2699–2709. [NASA ADS] [CrossRef] [Google Scholar]
  13. Abo El-Kassem M., El-Hossary F.M., Raaif M., Aroua W., Thabet A., Abd El-Moula A.A. (2021) Optoelectronic properties and surface plasmon polaritons of CdO/Ag/CdO multilayer films deposited by DC pulsed magnetron sputtering, J. Electron. Mater. 50, 4933–4944. [NASA ADS] [CrossRef] [Google Scholar]
  14. Barrett C.S., Massalski T.B. (1980) Structures of metals, Vol. 204, Pergamon, Oxford. [Google Scholar]
  15. Murugan R., Vijayaprasath G., Ravi G. (2015) The influence of substrate temperature on the optical and micro structural properties of cerium oxide thin films deposited by RF sputtering, Superlattices Microstruct. 85, 321–330. [NASA ADS] [CrossRef] [Google Scholar]
  16. Han H., Theodore N.D., Alford T.L. (2008) Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer, J. Appl. Phys. 103, 013708. [NASA ADS] [CrossRef] [Google Scholar]
  17. Ni J., Li J., Jian J., He J., Chen H., Leng X., Liu X. (2021) Recent studies on the fabrication of multilayer films by magnetron sputtering and their irradiation behaviors, Coatings 11, 12, 1468. [CrossRef] [Google Scholar]
  18. Shrividhya T., Mahalingam T., Ravi G. (2015) Physical property exploration of highly oriented V2O5 thin films prepared by electron beam evaporation, New J. Chem. 39, 9471–9479. [CrossRef] [Google Scholar]
  19. Sahare S., Choubey R.K., Jadhav G., Bhave T.M., Mukherjee S., Kumar S. (2017) A comparative investigation of optical and structural properties of Cu-doped CdO-derived nanostructures, J. Supercond. Nov. Magn. 30, 1439–1446. [CrossRef] [Google Scholar]
  20. Sakthivel P., Murugan R., Asaithambi S., Karuppaiah M., Vijayaprasath G., Rajendran S., Hayakawa Y., Ravi G. (2018) Radiofrequency power induced changes of structural, morphological, optical and electrical properties of sputtered cadmium oxide thin films, Thin Solid Films 654, 85–92. [NASA ADS] [CrossRef] [Google Scholar]
  21. Sakthivel P., Murugan R., Asaithambi S., Karuppaiah M., Rajendran S., Ravi G. (2019) Radio frequency magnetron sputtered CdO thin films for optoelectronic applications, J. Phys. Chem. Solids 126, 1–10. [NASA ADS] [CrossRef] [Google Scholar]
  22. Anitha M., Saravanakumar K., Anitha N., Kulandaisamy I., Amalraj L. (2019) Influence of annealing temperature on physical properties of Sn-doped CdO thin films by nebulized spray pyrolysis technique, Mater. Sci. Eng. B 243, 54–64. [CrossRef] [Google Scholar]
  23. Sahu D.R., Huang J.L. (2006) Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers, Appl. Surf. Sci. 253, 915–918. [NASA ADS] [CrossRef] [Google Scholar]
  24. Raaif M., Mohamed S.H. (2017) The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications, Appl. Phys. A 123, 441. [NASA ADS] [CrossRef] [Google Scholar]
  25. Abeles F. (1972) Optical properties of solids, North Holland, Amsterdam. [Google Scholar]
  26. Tauc J. (1974) in Amorphous and liquid semiconductors, J. Tauc (ed), Plenum Press, London and New York. [CrossRef] [Google Scholar]
  27. Thambidurai M., Muthukumarasamy N., Ranjitha A., Velauthapillai D. (2015) Structural and optical properties of Ga-doped CdO nanocrystalline thin films, Super lattices Microst. 86, 559. [NASA ADS] [CrossRef] [Google Scholar]
  28. Zhang Z. (2019) Effect of copper evolution on photoelectric properties of ZnO/Cu/ZnO hybrids, App. Phys. A 125, 9, 584. [NASA ADS] [CrossRef] [Google Scholar]
  29. Yu S., Li L., Xu D., Dong H., Jin Y. (2014) Characterization of SnO2/Cu/SnO2 multilayers for high performance transparent conducting electrodes, Thin Solid Films 562, 501. [NASA ADS] [CrossRef] [Google Scholar]
  30. Raaif M., Abd El-Moula A.A., El-Hossary F.M., Aroua W., Abo El-Kassem M. (2022) Optoelectronic properties of ZrO2/Cu/ZrO2 multilayers prepared by DC pulsed magnetron sputtering for electrode and nano-filter applications, ECS J. Solid State Sci. Technol. 11, 085011. [NASA ADS] [CrossRef] [Google Scholar]
  31. Segura A., Sánchez-Royo J.F., García-Domene B., Almonacid G. (2011) Current underestimation of the optical gap and Burstein-Moss shift in CdO thin films: A consequence of extended misuse of α 2-versus-hν plots, Appl. Phys. Lett. 99, 151907. [NASA ADS] [CrossRef] [Google Scholar]
  32. Gong L., Lu J.G., Ye Z.Z. (2011) Conductive Ga doped ZnO/Cu/ Ga doped ZnO thin flms prepared by magnetron sputtering at room temperature for fexible electronics, Thin Solid Films 519, 3870–3874. [NASA ADS] [CrossRef] [Google Scholar]
  33. Awad M.A., Raaif M. (2018) Optical and electrical performance of transparent conductive TiO2/Cu/TiO2 multilayers prepared by magnetron sputtering, J. Mater. Sci.: Mater. Electron. 29, 2815–2824. [CrossRef] [Google Scholar]
  34. Indluru A., Alford T.L. (2009) Effect of Ag thickness on electrical transport and optical properties of indium tin oxide–Ag–indium tin oxide multilayers, J. Appl. Phys. 105, 123528. [NASA ADS] [CrossRef] [Google Scholar]
  35. Calnan S., Tiwari A.N. (2010) High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films. 518, 1839–1849. [NASA ADS] [CrossRef] [Google Scholar]
  36. Minami Tadatsugu. (2013) Transparent conductive oxides for transparent electrode applications, Semicond. Semimet. 88, 159–200. [CrossRef] [Google Scholar]
  37. Haacke G. (1976) New figure of merit for transparent conductors, J. Appl. Phys. 47, 4086. [CrossRef] [Google Scholar]
  38. Chug P.N., Padalkar P.R., Jamadade V.S., Lokhande C.D. (2014–2015) Chemically deposited polycrystalline CdO thin films, Journal of Shivaji University (Science & Technology) 41, 2, 1. [Google Scholar]
  39. Sankarasubramanian K., Soundarrajan P., Sethuraman K., Ramesh Babu R., Ramamurthi K. (2014) Structural, optical and electrical properties of transparent conducting hydrophobic cadmium oxide thin films prepared by spray pyrolysis technique, Superlattices Microstruct. 69, 29–37. [NASA ADS] [CrossRef] [Google Scholar]
  40. Rico V., López C., Borrás A., Espinós J.P., González-Elipe A.R. (2006) Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2, Solar Energy Materials & Solar Cells 90, 2944–2949. [CrossRef] [Google Scholar]
  41. Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater. 14, 2812–2816. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.