Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 11
Number of page(s) 14
Published online 01 March 2023
  1. Preston F.W. (09.02.1922) The structure of abraded glass surfaces, Trans. Opt. Soc. 23, 141. [NASA ADS] [CrossRef] [Google Scholar]
  2. Cook L.M. (1990) Chemical processes in glass polishing, J. Non-Cryst. Solids 120, 1–3, 152–171. [NASA ADS] [CrossRef] [Google Scholar]
  3. Evans C.J., Paul E., Dornfeld David, Lucca D.A., Byrne G., Tricard M., Klocke F., Dambon O., Mullany B.A. (2003) Material removal mechanisms in lapping and polishing, Laboratory for Manufacturing and Sustainability, UC Berkeley. [Google Scholar]
  4. Klocke F., Zunke R. (2009) Removal mechanisms in polishing of silicon based advanced ceramics, CIRP Ann. 58, 1, 491–494. [CrossRef] [Google Scholar]
  5. Klocke F., Brecher C., Zunke R., Tuecks R. (2011) Corrective polishing of complex ceramics geometries, Precis. Eng. 35, 2, 258–261. [Google Scholar]
  6. Becker E. (2011) Chemisch-mechanische Politur von optischen Glaslinsen (Berichte aus der Werkstofftechnik), Zugl.: Aachen, Techn. Hochsch., Diss., Shaker, Aachen. [Google Scholar]
  7. Lee H., Lee D., Jeong H. (2016) Mechanical aspects of the chemical mechanical polishing process: a review, Int. J. Precis. Eng. Manuf. 17, 4, 525–536. [CrossRef] [Google Scholar]
  8. Brecher C., Esser M., Witt S. (2009) Interaction of manufacturing process and machine tool, CIRP Ann. 58, 2, 588–607. [CrossRef] [Google Scholar]
  9. Brinkmann U. (ed.) (2000) Deutsche Agenda Optische Technologien für das 21. Jahrhundert: Potenziale, Trends und Erfordernisse, VDI-Technologiezentrum, Düsseldorf. [Google Scholar]
  10. Ghosh G., Sidpara A., Bandyopadhyay P.P. (2018) Fabrication of optical components by ultraprecision finishing processes, Springer Link, pp. 87–119. [Google Scholar]
  11. National Research Council (1999) Harnessing light: optical science and engineering for the 21st century, 2 print ed., National Acad. Press, Washington. [Google Scholar]
  12. Mullany B., Mainuddin M. (2012) The influence of process vibrations on precision polishing metrics, CIRP Ann. 61, 1, 555–558. [CrossRef] [Google Scholar]
  13. Cooke F. (1976) Optical activities in industry, Appl. Opt. 15, 2, 293. [NASA ADS] [CrossRef] [Google Scholar]
  14. Saruhan H., Sandemir S., Çiçek A., Uygur I. (2014) Vibration analysis of rolling element bearings defects, J. Appl. Res. Technol. 12, 3, 384–395. [CrossRef] [Google Scholar]
  15. Kojima T., Miyajima M., Akaboshi F., Yogo T., Ishimoto S. (1999) Practical use of CMP process monitor in Cu polishing, in: 1999 IEEE international symposium on semiconductor manufacturing conference proceedings (Cat No. 99CH36314), IEEE, pp. 187–190. [CrossRef] [Google Scholar]
  16. Rao P.K., Bhushan M.B., Bukkapatnam S.S.T., Kong Z., Byalal S., Beyca O.F. Fields A., Komanduri R. (2014) Process-machine interaction (PMI) modeling and monitoring of chemical mechanical planarization (CMP) process using wireless vibration sensors, IEEE Trans. Semicond. Manuf. 27, 1, 1–15. [CrossRef] [Google Scholar]
  17. Hetherington D.L., Stein D.J., Lauffer J.P., Wyckoff E.E., Shingledecker D.M. (1999) Analysis of in-situ vibration monitoring for end-point detection of CMP planarization processes, in: Amberiadis K., Kissinger G., Okumura K., Pabbisetty S., Weiland L.H. (eds.) In-line characterization, yield reliability, and failure analyses in microelectronic manufacturing, SPIE (SPIE Proceedings), p. 89. [NASA ADS] [CrossRef] [Google Scholar]
  18. Reichling M., Gogoll S., Stenzel E., Johansen H., Huisinga M., Matthias E. (1995) Laser damage processes in cleaved and polished CaF2 at 248 nm, in: Bennett H.E., Guenther A.H., Kozlowski M.R., Newnam B.E., Soileau M.J. (eds.) 27th annual boulder damage symposium: laser-induced damage in optical materials: 1995, SPIE (SPIE Proceedings), p. 260. [Google Scholar]
  19. Akbari J., Borzoie H., Mamduhi M.H. (2008) Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3), Eng. Technol. 41, 785–789. [Google Scholar]
  20. Jianhua Z., Yan Z., Shuo Z., Fuqiang T., Lanshen G., Ruizhen D. (2014) Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass, Shock. Vib. 4, 1–10. [Google Scholar]
  21. Schopf C., Rascher R., Sperber P. (2010) Vor- und Nachteile der Ultraschalltechnologie beim Schleifen von optischen Flächen, Achtes Symposium – Zukunft Glas – von der Tradition zum High-Tech-Produkt, Zwiesel. [Google Scholar]
  22. Bliedtner J., Henkel S., Schwager A., Götze K., Gerhardt M., Fuhr M. (2018) New process chain for the production of complex freeforms, Opt. Photon. 13, 2, 35–39. [CrossRef] [Google Scholar]
  23. Ding K., Fu Yucan, Su H., Gong X., Wu K. (2014) Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide, Int. J. Adv. Manuf. Technol. 71, 9–12, 1929–1938. [CrossRef] [Google Scholar]
  24. Suzuki H., Hamada S., Okino T., Kondo M., Yamagata Y., Higuchi T. (2010) Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing, CIRP Ann. 59, 1, 347–350. [CrossRef] [Google Scholar]
  25. Xu W., Lu X., Pan G., Lei Y., Luo J. (2011) Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP), Appl. Surf. Sci. 257, 7, 2905–2911. [NASA ADS] [CrossRef] [Google Scholar]
  26. Wolf S. (2002) Deep-submicron process technology, in: Wolf S., Tauber R.N., Silicon processing for the VLSI era, vol. 4, Lattice Press, Sunset Beach, CA. [Google Scholar]
  27. Luo J., Dornfeld D.A. (2004) Integrated modeling of chemical mechanical planarization for sub-micron IC fabrication: from particle scale to feature, die and wafer scales, Springer, Berlin, Heidelberg. [Google Scholar]
  28. Mullany B., Byrne G. (2003) The effect of slurry viscosity on chemical–mechanical polishing of silicon wafers, J. Mater. Process. Technol. 132, 1–3, 28–34. [CrossRef] [Google Scholar]
  29. Boning D.S., Moyne W.P., Smith T.H., Moyne J., Telfeyan R., Hurwitz A., Shellman S., Tayor J. (1996) Run by run control of chemical-mechanical polishing, IEEE Trans. Compon. Packaging Manuf. Technol. 19, 4, 307–314. [CrossRef] [Google Scholar]
  30. SIGENIC (2020) Sigenic – engineering intelligent solutions: vibration sensor series., accessed 2020-10-26. [Google Scholar]
  31. FAG (ed.) (2019) Wälzlagerpraxis: handbuch zur gestaltung und berechnung von wälzlagerungen, Vereinigte Fachverlage GmbH, 5. aktualisierte Auflage. Mainz. (Antriebstechnik) [Google Scholar]
  32. Midpoint Bearing (2021) Bearing frequencies: formulas to calculate bearing frequencies,, accessed 2021-12-05. [Google Scholar]
  33. Fernandez F. (2021) Typical bearing defects and spectral identification,, accessed 2021-12-05. [Google Scholar]
  34. Balluff GmbH(2021) Condition monitoring sensor with integrated data preprocessing, Neuhausen. [Google Scholar]
  35. IFM electronic GmbH (2021) IO-link master with USB interface: AL1060. [Google Scholar]
  36. ASC GmbH (20.05.2021) MEMS capacitive accelerometer: ASC OS-325MF-PG, Pfaffenhofen. [Google Scholar]
  37. National Instruments (2014) NI USB-6001: specifications. [Google Scholar]
  38. SKF (2021) Nachschmierung und Einlaufen,, accessed 2021-12-05. [Google Scholar]
  39. Krause W. (ed) (2018) Konstruktionselemente der Feinmechanik 4, vollständig überarbeitete und, Carl Hanser Verlag GmbH & Co. KG, München. (Hanser eLibrary). [CrossRef] [Google Scholar]
  40. Hamed Y.S., Kandil A., Machado J.T. (2020) Utilizing macro fiber composite to control rotating blade vibrations, Symmetry 12, 12, 1984. [NASA ADS] [CrossRef] [Google Scholar]
  41. Guo J., Suzuki H., Higuchi T. (2013) Development of micro polishing system using a magnetostrictive vibrating polisher, Precis. Eng. 37, 1, 81–87. [Google Scholar]
  42. Krüger J., Buganza F., Koch V. (2016) The effects of future noise limit values on the design of exhaust systems, ATZ worldwide 118, 9, 48–51. [CrossRef] [Google Scholar]
  43. Greco D., Blanc P., Aubry E., Vaclavik I. (2007) Active vibration control of flexible materials found within printing machines, J. Sound Vib. 300, 3–5, 831–846. [NASA ADS] [CrossRef] [Google Scholar]
  44. McFee B., Metsai A. et al. (2021) Librosa/librosa: 0.8.1rc2, Zenodo. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.