Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 5
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-020-0126-z
Published online 10 February 2020
  1. Kallakunta VR, Sarabu S, Bandari S, Tiwari R, Patil H, Repka MA, An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opin Drug Deliv (2019) 16, 539–550. https://doi.org/10.1080/17425247.2019.1609448 [CrossRef] [Google Scholar]
  2. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N, A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal (2007) 44, 683–700. https://doi.org/10.1016/j.jpba.2007.03.023 [CrossRef] [Google Scholar]
  3. Prieto N, Roehe R, Lavín P, Batten G, Andrés S, Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review. Meat Sci. (2009) 83, 175–186. https://doi.org/10.1016/j.meatsci.2009.04.016 [Google Scholar]
  4. Lovatti BPO, Silva SRC, Portela NDA, Sad CMS, Rainha KP, Rocha JTC, Romão W, Castro EVR, Filgueiras PR, Identification of petroleum profiles by infrared spectroscopy and chemometrics. Fuel (2019) 254, 115670. https://doi.org/10.1016/j.fuel.2019.115670 [CrossRef] [Google Scholar]
  5. Pasquini C, Bueno AF, Characterization of petroleum using near-infrared spectroscopy: quantitative modeling for the true boiling point curve and specific gravity. Fuel (2007) 86, 1927–1934. https://doi.org/10.1016/j.fuel.2006.12.026 [CrossRef] [Google Scholar]
  6. Li M, Qian Z, Shi B, Medlicott J, East A, Evaluating the performance of a consumer scale SCiO™ molecular sensor to predict quality of horticultural products. Postharvest Biol. Technol. (2018) 145, 183–192. https://doi.org/10.1016/j.postharvbio.2018.07.009 [Google Scholar]
  7. de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Muñoz RAA, Richter EM, Paixão TRLC, Coltro WKT, Portable analytical platforms for forensic chemistry: a review. Anal. Chim. Acta (2018) 1034, 1–21. https://doi.org/10.1016/j.aca.2018.06.014 [CrossRef] [Google Scholar]
  8. Quaresima, Ferrari, A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go?. Photonics (2019) 6, 387. https://doi.org/10.3390/photonics6030087 [NASA ADS] [CrossRef] [Google Scholar]
  9. Eiken FL, Pedersen BL, Bækgaard N, Eiberg JP, Diagnostic methods for measurement of peripheral blood flow during exercise in patients with type 2 diabetes and peripheral artery disease: a systematic review. Int. Angiol. (2019) 38, 62–69. https://doi.org/10.23736/S0392-9590.18.04051-8 [CrossRef] [Google Scholar]
  10. Pasquini C, Near infrared spectroscopy: a mature analytical technique with new perspectives – a review. Anal. Chim. Acta (2018) 1026, 8–36. https://doi.org/10.1016/j.aca.2018.04.004 [CrossRef] [Google Scholar]
  11. Yan H, Siesler HW, Quantitative analysis of a pharmaceutical formulation: performance comparison of different handheld near-infrared spectrometers. J Pharm Biomed Anal (2018) 160, 179–186. https://doi.org/10.1016/j.jpba.2018.07.048 [Google Scholar]
  12. Paiva EM, Rohwedder JJR, Pasquini C, Pimentel MF, Pereira CF, Quantification of biodiesel and adulteration with vegetable oils in diesel/biodiesel blends using portable near-infrared spectrometer. Fuel (2015) 160, 57–63. https://doi.org/10.1016/j.fuel.2015.07.067 [CrossRef] [Google Scholar]
  13. Cirilli M, Bellincontro A, Urbani S, Servili M, Esposto S, Mencarelli F, Muleo R, On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device. Food Chem (2016) 199, 96–104. https://doi.org/10.1016/j.foodchem.2015.11.129 [CrossRef] [Google Scholar]
  14. Baca-Bocanegra B, Hernandez-Hierro JM, Nogales-Bueno J, Heredia FJ, Feasibility study on the use of a portable micro near infrared spectroscopy device for the "in vineyard" screening of extractable polyphenols in red grape skins. Talanta (2019) 192, 353–359. https://doi.org/10.1016/j.talanta.2018.09.057 [CrossRef] [Google Scholar]
  15. Wang P, Yu Z, Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: a review. J. Pharm Anal (2015) 5, 277–284. https://doi.org/10.1016/j.jpha.2015.04.001 [CrossRef] [Google Scholar]
  16. Yin Lianghong, Zhou Junmei, Chen Dandan, Han Tingting, Zheng Bingsong, Younis Adnan, Shao Qingsong, A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2019) 221, 117208. https://doi.org/10.1016/j.saa.2019.117208 [NASA ADS] [CrossRef] [Google Scholar]
  17. Chinese Pharmacopoeia 2015. IV, 0116 [Google Scholar]
  18. Xiaobo Z, Jiewen Z, Povey MJW, Holmes M, Hanpin M, Variables selection methods in near-infrared spectroscopy. Anal Chim Acta (2010) 667, 14–32. https://doi.org/10.1016/j.aca.2010.03.048 [CrossRef] [Google Scholar]
  19. Williams P, The RPD statistic: a tutorial note. NIR News (2010) 25, 22–26. https://doi.org/10.1255/nirn.1419 [Google Scholar]
  20. Chang Cheng-Wen, Laird David A., Mausbach Maurice J., Hurburgh Charles R., Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal (2001) 65, 2480–490. https://doi.org/10.2136/sssaj2001.652480x [NASA ADS] [CrossRef] [Google Scholar]
  21. Williams PC, Sobering DC, Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc (1993) 1, 25–32. https://doi.org/10.1255/jnirs.3 [NASA ADS] [CrossRef] [Google Scholar]
  22. Hong-Dong, L., Yi-Zeng, L.. http://freesourcecode.net/matlabprojects/71983/a-library-of-pls-and-pls-lda-in-matlab-(2019). Accessed 02 Oct. 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.