J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 5
Number of page(s) 9
Published online 11 April 2019
  1. Kino GS, Chim SSC, Mirau correlation microscope. Appl. Opt (1990) 29, 3775–3783. [NASA ADS] [CrossRef] [Google Scholar]
  2. Lee BS, Strand TC, Profilometry with a coherence scanning microscope. Appl. Opt (1990) 29, 3784–3788. [NASA ADS] [CrossRef] [Google Scholar]
  3. Caber PJ, Interferometric profiler for rough surfaces. Appl. Opt (1993) 32, 3438–3441. [NASA ADS] [CrossRef] [Google Scholar]
  4. Malacara, D.: Optical Shop Testing. Wiley, Hoboken, New Jersey, USA (2007) [Google Scholar]
  5. de Groot P, Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photon (2015) 7, 1–65. [CrossRef] [Google Scholar]
  6. de Groot P, de Lega XC, Interpreting interferometric height measurements using the instrument transfer function. Proc. Fringe (2005) 2005, 30–37. [Google Scholar]
  7. Tolmon FR, Wood JG, Fringe spacing in interference microscopes. J. Scientific Instruments (1956) 33, 236–239. [NASA ADS] [CrossRef] [Google Scholar]
  8. Biegen JF, Calibration requirements for Mirau and Linnik microscope interferometers. Appl. Opt (1989) 28, 1972–1974. [NASA ADS] [CrossRef] [Google Scholar]
  9. Creath K, Calibration of numerical aperture effects in interferometric microscope objectives. Appl. Opt (1989) 28, 3333–3338. [NASA ADS] [CrossRef] [Google Scholar]
  10. Sheppard CJR, Larkin KG, Effect of numerical aperture on interference fringe spacing. Appl. Opt (1995) 34, 4731–4734. [NASA ADS] [CrossRef] [Google Scholar]
  11. Köhler A, Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Zeitschrift für wissenschaftliche Mikroskopie und für Mikroskopische Technik (1893) 10, 4433–440. [Google Scholar]
  12. Abbe E, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie (1873) 9, 1413–468. [CrossRef] [Google Scholar]
  13. Lehmann P, Xie W, Signal formation in depth-scanning 3D interference microscopy at high numerical apertures. SPIE Proc. (2015) 9660, 966015. [NASA ADS] [CrossRef] [Google Scholar]
  14. Xie W, Lehmann P, Niehues J, Tereschenko S, Signal modeling in low coherence interference microscopy on example of rectangular grating. Opt. Exp. (2016) 24, 14283–14300. [NASA ADS] [CrossRef] [Google Scholar]
  15. Lehmann P, Xie W, Allendorf B, Tereschenko S, Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit. Opt. Exp. (2018) 26, 7376–7389. [CrossRef] [Google Scholar]
  16. Abdulhalim I, Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Ann. Phys. (2012) 525, 787–804. [NASA ADS] [CrossRef] [Google Scholar]
  17. Buchta Z, Mikel B, Lazar J, Cip O, White-light fringe detection based on a novel light source and colour CCD camera. Meas. Sci. Technol (2011) 22, 094031. [NASA ADS] [CrossRef] [Google Scholar]
  18. Homepage Supracon AG. Accessed 20 Mar 2019 [Google Scholar]
  19. Homepage Simetrics GmbH. Accessed 20 Mar 2019 [Google Scholar]
  20. Fleischer M, Windecker R, Tiziani HJ, Fast algorithms for data reduction in modern optical three-dimensional profile measurement systems with MMX technology. Appl. Opt. (2000) 39, 1290–1297. [NASA ADS] [CrossRef] [Google Scholar]
  21. Tereschenko, S.: Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik, PhD Thesis. University of Kassel, Kassel (2018) [Google Scholar]
  22. Harasaki A, Wyant JC, Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl. Opt. (2000) 39, 2101–2106. [NASA ADS] [CrossRef] [Google Scholar]
  23. Xie W, Lehmann P, Niehues J, Lateral resolution and transfer characteristics of vertical scanning white-light interferometers. Appl. Opt. (2012) 51, 1795–1803. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.