Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Article Number 4
Number of page(s) 8
Published online 04 April 2019
  1. Maier SA, Plasmonics: Fundamentals and Applications (2007) BerlinSpringer [CrossRef] [Google Scholar]
  2. Novotny L, Hecht B, Principles of Nano-Optics (2012) CambridgeCambridge University Press [CrossRef] [Google Scholar]
  3. Fang Y, Sun M, Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. (2015) 4, e294. [NASA ADS] [CrossRef] [Google Scholar]
  4. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP, Biosensing with plasmonic nanosensors. Nat. Mater. (2008) 7, 442–453. [CrossRef] [PubMed] [Google Scholar]
  5. O’Connor D, Zayats AV, The third plasmonic revolution. Nat. Nanotech (2010) 5, 482–483. [CrossRef] [Google Scholar]
  6. Guo X, Ma Y, Wang Y, Tong L, Nanowire plasmonic waveguides, circuits and devices. Laser Photon. Rev. (2013) 7, 855–881. [NASA ADS] [CrossRef] [Google Scholar]
  7. Faryad M, Lakhtakia A, Grating-coupled excitation of multiple surface plasmon-polariton waves. Phys. Rev. A (2011) 84, 033852. [NASA ADS] [CrossRef] [Google Scholar]
  8. Raether H, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988) BerlinSpringer [CrossRef] [Google Scholar]
  9. Evlyukhin AB, Brucoli G, Martín-Moreno L, Bozhevolnyi SI, García-Vidal FJ, Surface plasmon polariton scattering by finite-size nanoparticles. Phys. Rev. B (2007) 76, 075426. [CrossRef] [Google Scholar]
  10. Sánchez-Gil JA, Maradudin AA, Surface-plasmon polariton scattering from a finite array of nanogrooves /ridges: Efficient mirrors. Appl. Phys. Lett. (2005) 86, 251106. [CrossRef] [Google Scholar]
  11. Leppänen L-P, Saastamoinen K, Lehtolahti J, Friberg AT, Setälä T, Detection of partial polarization of light beams with dipolar nanocubes. Opt. Express (2016) 24, 1472–1479. [CrossRef] [Google Scholar]
  12. Shchegrov AV, Joulain K, Carminati R, Greffet J-J, Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. (2000) 85, 1548–1551. [NASA ADS] [CrossRef] [Google Scholar]
  13. Setälä T, Kaivola M, Friberg AT, Degree of polarization in near fields of thermal sources: effects of surface waves. Phys. Rev. Lett (2002) 88, 123902. [CrossRef] [Google Scholar]
  14. Gan CH, Gbur G, Visser TDSurface plasmons modulate the spatial coherence of light in Young’s interference experiment. Phys. Rev. Lett. (2007) 98, 043908. [NASA ADS] [CrossRef] [Google Scholar]
  15. Divitt S, Frimmer M, Visser TD, Novotny L, Modulation of optical spatial coherence by surface plasmon polaritions. Opt. Lett. (2016) 41, 3094–3097. [NASA ADS] [CrossRef] [Google Scholar]
  16. Morrill D, Li D, Pacifici D, Measuring subwavelength spatial coherence with plasmonic interferometry. Nat. Photon. (2016) 10, 681–687. [NASA ADS] [CrossRef] [Google Scholar]
  17. Laverdant J, Aberra Guebrou S, Bessueille F, Symonds C, Bellessa J, Leakage interferences applied to surface plasmon analysis. J. Opt. Soc. Am. A (2014) 31, 1067–1073. [Google Scholar]
  18. Norrman A, Setälä T, Friberg AT, Partial coherence and polarization of a two-mode surface-plasmon polariton field at a metallic nanoslab. Opt. Express (2015) 23, 20696–20714. [CrossRef] [Google Scholar]
  19. Norrman A, Ponomarenko SA, Friberg AT, Partially coherent surface plasmon polaritons. EPL (2016) 116, 64001. [NASA ADS] [CrossRef] [Google Scholar]
  20. Chen Y, Norrman A, Ponomarenko SA, Friberg AT, Plasmon coherence determination by nanoscattering. Opt. Lett. (2017) 42, 3279–3282. [NASA ADS] [CrossRef] [Google Scholar]
  21. Mao H, Chen Y, Ponomarenko SA, Friberg AT, Coherent pseudo-mode representation of partially coherent surface plasmon polaritons. Opt. Lett. (2018) 43, 1395–1398. [NASA ADS] [CrossRef] [Google Scholar]
  22. Chen Y, Norrman A, Ponomarenko SA, Friberg AT, Partially coherent axiconic surface plasmon polariton fields. Phys. Rev. A (2018) 97, 041801(R). [NASA ADS] [CrossRef] [Google Scholar]
  23. Chen Y, Norrman A, Ponomarenko SA, Friberg AT, Coherence lattices in surface plasmon polariton fields. Opt. Lett. (2018) 43, 3429–3432. [NASA ADS] [CrossRef] [Google Scholar]
  24. Hecht E, Optics (2002) San FranciscoAddison-Wesley [Google Scholar]
  25. Friberg AT, Setälä T, Electromagnetic theory of optical coherence (invited). J. Opt. Soc. Am. A (2016) 33, 2431–2442. [NASA ADS] [CrossRef] [Google Scholar]
  26. Bohren CF, Huffman DR, Absorption and Scattering of Light by Small Particles (1998) New YorkWiley [CrossRef] [Google Scholar]
  27. Massa E, Maier SA, Giannini V, An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas. New J. Phys. (2013) 15, 063013. [CrossRef] [Google Scholar]
  28. Friberg AT, Reng N, Wide-angle reciprocity relations between near and far fields. Proc SPIE (1996) 2870, 154–162. [Google Scholar]
  29. Turunen J, Diffraction theory of microrelief gratings. Herzig, HP, editor: Micro-optics: Elements, Systems and Applications (1997) LondonTaylor and Francis [Google Scholar]
  30. Weast RC, CRC Handbook of Chemistry and Physics (1984) Boca RatonCRC Press [Google Scholar]
  31. Ponomarenko SARoychowdhury H, Wolf E, Physical significance of complete spatial coherence of optical fields. Phys. Lett. A (2005) 345, 10–12. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.