Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1186/s41476-018-0093-9 | |
Published online | 01 November 2018 |
- Rosenholm JB, Peiponen K-E, Gornov E, Materials cohesion and interaction forces. Adv. Colloid Interf. Sci. (2008) 141, 48–65. https://doi.org/10.1016/j.cis.2008.03.001 [CrossRef] [Google Scholar]
- Yuan Y, Lee TR, Bracco G, Holst B, Contact angle and wetting properties. Surface Science Techniques (2013) BerlinSpringer3–34. https://doi.org/10.1007/978-3-642-34243-1_1 [CrossRef] [Google Scholar]
- Johnson RE, Dettre RH, Contact angle hysteresis. I. Study of an idealized rough surface. Contact Angle, Wettability and Adhesion. Adv. Chem. Ser. 43 (1964) Washington DCAmerican Chemical Society112–135. https://doi.org/10.1021/ba-1964-0043.ch007 [CrossRef] [Google Scholar]
- Schulze R-D, Possart W, Kamusewitz H, Bischof C, Young’s equilibrium contact angle on rough solid surfaces. Part I. an empirical determination. J. Adhesion Sci. Technol. (1989) 3, 39–78. https://doi.org/10.1163/156856189X00038 [CrossRef] [Google Scholar]
- Wang XD, Peng XF, Lu JF, Liu T, Wang BX, Contact angle hysteresis on rough solid surfaces. Heat. Tran. Asian. Res. (2004) 33, 201–210. https://doi.org/10.1002/htj.20013 [CrossRef] [Google Scholar]
- David R, Neumann AW, Contact angle hysteresis on randomly rough surfaces: a computational study. Langmuir (2013) 29, 4551–4558. https://doi.org/10.1021/la400294t [Google Scholar]
- Wolansky G, Marmur AW, The actual contact angle on a Heterogenous rough surface in three dimensions. Langmuir (1998) 14, 5292–5297. https://doi.org/10.1021/la960723p [CrossRef] [Google Scholar]
- Prajitno D H, Maulana A, Syarif D G, Effect of Surface Roughness on Contact Angle Measurement of Nanofluid on Surface of Stainless Steel 304 by Sessile Drop Method. Journal of Physics: Conference Series (2016) 739, 012029. [NASA ADS] [CrossRef] [Google Scholar]
- Quere D, Wetting and roughness. Annu. Rev. Mater. Res. (2008) 38, 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434 [NASA ADS] [CrossRef] [Google Scholar]
- Ralston J, Popescu M, Sedev R, Dynamics of wetting from an experimental point of view. Annu. Rev. Mater. Res. (2008) 38, 23–43. https://doi.org/10.1146/annurev.matsci.38.060407.130231 [NASA ADS] [CrossRef] [Google Scholar]
- Aytouna M, Parcedes J, Shahidzadeh-Bonn N, Moulinet S, Wagner C, Amarouchene Y, Drop formation in non-Newtonian fluids. Phys. Rev. Lett. (2013) 110, 034501-1-5. https://doi.org/10.1103/PhysRevLett.110.034501 [NASA ADS] [CrossRef] [Google Scholar]
- Cottington R, Murphy CM, Singeleterry CR, Effect of polar-nonpolar additives on oil spreading on solids, with applications to non-spreading oils, contact angle, wettability and adhesion. Adv. Chem. (1964) 43, 341–354. https://doi.org/10.1021/ba-1964-0043.ch025 [CrossRef] [Google Scholar]
- Brutin D, Droplet Wetting and Evaporation: from Pure to Complex Fluids (2015) AmsterdamElsevier [Google Scholar]
- Rafai S, Sarker D, Bergeron V, Meunier J, Bonn D, Superspreading: aqueous surfactant drops spreading on hydrophobic surfaces. Langmuir (2002) 18, 10486–10488. https://doi.org/10.1021/la020271i [Google Scholar]
- Tanner L, The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Applied Physics (1979) 12, 1473–1484. https://doi.org/10.1088/0022-3727/12/9/009 [NASA ADS] [CrossRef] [Google Scholar]
- Kanyathare B, Kuivalainen K, Räty J, Silftsten P, Bawuah P, Peiponen K-E, A prototype of an optical sensor for the identification of diesel oil adulterated with kerosene. J. Eur. Opt. Soc. Rapid. Publ. (2018) 14, 1–6. https://doi.org/10.1186/s41476-018-0071-2 [CrossRef] [Google Scholar]
- Kanyathare B, Peiponen K-E, Wavelength-dependent excess permittivity as indicator of kerosene in diesel oil. Appl. Opt. (2018) 57, 2997–3002. https://doi.org/10.1364/AO.57.002997 [NASA ADS] [CrossRef] [Google Scholar]
- Kanyathare B, Peiponen K-E, Hand-held refractometer-based measurement and excess permittivity analysis method for detection of diesel oils adulterated by kerosene in field conditions. Sensors (2018) 18, 1551. https://doi.org/10.3390/s18051551 [NASA ADS] [CrossRef] [Google Scholar]
- Palik ED, Handbook of Optical Constants of Solids Vol. I-IV. p. 313 (1985) San DiegoAcademic Press [Google Scholar]
- Tanner LH, The use of laser light in the study of metal surfaces. Opt. Laser. Technol. (1976) 8, 113–116. https://doi.org/10.1016/0030-3992(76)90023-2 [CrossRef] [Google Scholar]
- Hensler DH, Light scattering from fused polycrystalline Aluminium oxide surfaces. Appl. Opt. (1972) 11, 2522–2528. https://doi.org/10.1364/AO.11.002522 [NASA ADS] [CrossRef] [Google Scholar]
- Beckmann P, Scattering of Electromagnetic Waves from Rough Surfaces (1963) New YorkMacmillan [Google Scholar]
- Fujii H, Asakura T, Roughness measurements of metal surfaces using laser speckle. J. Opt. Soc. Am. (1977) 67, 1171–1176. https://doi.org/10.1364/JOSA.67.001171 [NASA ADS] [CrossRef] [Google Scholar]
- Silvennoinen R, Peiponen K-E, Myller K, Specular Gloss (2008) AmsterdamElsevier [Google Scholar]
- Niskanen I, Peiponen K-E, Räty: assessment of refractive index of pigments by gaussian fitting of light backscattering data in context of the liquid immersion method. Appl. Spec. (2010) 64, 558–561. https://doi.org/10.1366/000370210791211754 [NASA ADS] [CrossRef] [Google Scholar]
- Kuivalainen K, Oksman A, Juuti M, Myller K, Peiponen K-E, Advanced glossmeters for industrial applications. Opt. Rev. (2010) 17, 248–251. https://doi.org/10.1007/s10043-010-0043-2 [NASA ADS] [CrossRef] [Google Scholar]
- Reis JC, Iglesias TP, Douhéret G, Davis MJ, The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics. Phys. Chem. (2009) 11, 3977–3986. [NASA ADS] [Google Scholar]
- Rahimi P, Ward CA, Contact angle hysteresis on smooth and homogenous surfaces in gravitational fields. Microgravity sci. Technol. (2005) 16, 231–235. https://doi.org/10.1007/BF02945982 [Google Scholar]
- Raeesi, B., Morrow, N.R., Mason, G.: Contact angle hysteresis at smooth and rough surfaces. In: GeoConvention: Integration, Calgary, Canada, p. 2013 [Google Scholar]
- Marmur A, Contact angle hysteresis on Heterogenous smooth surfaces. J. Colloid. Interface. Sci. (1994) 168, 40–46. https://doi.org/10.1006/jcis.1994.1391 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.