Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 23
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-018-0091-y
Published online 26 October 2018
  1. Ren Z, Cai L, Three-dimensional structure measurement of diamond crowns based on stereo vision. Appl. Opt. (2009) 48, 315917–5932. https://doi.org/10.1364/AO.48.005917 [NASA ADS] [CrossRef] [Google Scholar]
  2. Wang J, Wang XJ, Liu F, Gong Y, Wang H, Qin Z, Modeling of binocular stereo vision for remote coordinate measurement and fast calibration. Opt. Lasers Eng. (2009) 54, 1269–274. [Google Scholar]
  3. Son S, Park H, Lee KH, Automated laser scanning system for reverse engineering and inspection. Int. J. Mach. Tools Manuf. (2002) 42, 8889–897. https://doi.org/10.1016/S0890-6955(02)00030-5 [CrossRef] [Google Scholar]
  4. Briard P, Saengkaew S, Wu X, Meunier-Guttin-Cluzel S, Chen L, Cen K, Grehan G, Droplet characteristic measurement in Fourier interferometry imaging and behavior at the rainbow angle. Appl Opt (2013) 52, 1A346–A355. https://doi.org/10.1364/AO.52.00A346 [NASA ADS] [CrossRef] [Google Scholar]
  5. Zuo C, Chen Q, Gu G, Feng S, Feng F, Li R, Shen G, High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt. Lasers Eng. (2013) 51, 8953–960. https://doi.org/10.1016/j.optlaseng.2013.02.012 [NASA ADS] [CrossRef] [Google Scholar]
  6. Zuo C, Huang L, Zhang M, Chen Q, Asundi A, Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. (2016) 85, 84–103. https://doi.org/10.1016/j.optlaseng.2016.04.022 [NASA ADS] [CrossRef] [Google Scholar]
  7. Liu XL, Cai ZW, Yin YK, Jiang H, He D, He WQ, Zhang ZH, Peng X, Calibration of fringe projection profilometry using an inaccurate 2D reference target. Opt. Lasers Eng. (2016) 89, 131–137. https://doi.org/10.1016/j.optlaseng.2016.05.025 [Google Scholar]
  8. Zhang S, Yau ST, Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system. Appl. Opt. (2008) 47, 173134–3142. https://doi.org/10.1364/AO.47.003134 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chen R, Xu J, Chen HP, Su JH, Zhang ZH, Chen K, 2016 accurate calibration method for camera and projector in fringe patterns measurement system. Appl. Opt. (2016) 55, 164293–4300. https://doi.org/10.1364/AO.55.004293 [NASA ADS] [CrossRef] [Google Scholar]
  10. Jia X, Zeng D, Model and error analysis for coded structured light measurement system. Opt. Eng. (2010) 49, 121127–1134. [Google Scholar]
  11. Zhang ZH, Zhang D, Peng X, Performance analysis of a 3D full-field sensor based on fringe projection. Opt. Lasers Eng. (2004) 42, 3341–353. https://doi.org/10.1016/j.optlaseng.2003.11.004 [NASA ADS] [CrossRef] [Google Scholar]
  12. Xu J, Douet J, Zhao J, Song L, Chen K, A simple calibration method for structured light-based 3D profile measurement. Opt. Laser Technol. (2013) 48, 2187–193. https://doi.org/10.1016/j.optlastec.2012.09.035 [NASA ADS] [CrossRef] [Google Scholar]
  13. Leandry I, Breque C, Valle V, Calibration of a structured-light projection system: development to large dimension objects. Opt. Lasers Eng. (2012) 50, 3373–379. https://doi.org/10.1016/j.optlaseng.2011.10.020 [NASA ADS] [CrossRef] [Google Scholar]
  14. Anchini R, Leo GD, Liguori C, Paolollo A, A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry. IEEE Trans. Instrum. Meas. (2009) 58, 51291–1298. https://doi.org/10.1109/TIM.2009.2012952 [NASA ADS] [CrossRef] [Google Scholar]
  15. Zhang ZH, Ma HY, Guo T, Zhang SX, Chen JP, Simple, flexible calibration of phase calculation-based three-dimensional imaging system. Opt. Lett. (2011) 36, 71257–1259. https://doi.org/10.1364/OL.36.001257 [NASA ADS] [CrossRef] [Google Scholar]
  16. Zhang ZH, Huang SJ, Meng SS, Gao F, Jiang XQ, A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system. Opt. Express (2013) 21, 1012218–12227. https://doi.org/10.1364/OE.21.012218 [NASA ADS] [CrossRef] [Google Scholar]
  17. Gao W, Wang L, Hu Z, Flexible method for structured light system calibration. Opt. Eng. (2008) 47, 8767–781. [Google Scholar]
  18. Zhang S, Huang PS, Novel method for structured light system calibration. Opt. Eng. (2006) 45, 8https://doi.org/10.1117/1.2336196 [Google Scholar]
  19. Zhang ZY, A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. (2000) 22, 111330–1334. https://doi.org/10.1109/34.888718 [CrossRef] [Google Scholar]
  20. Li ZW, Shi YS, Wang CJ, Wang YY, Accurate calibration method for structured light system. Opt. Eng. (2008) 47, 5https://doi.org/10.1117/1.2931517 [Google Scholar]
  21. Chen X, Xi J, Jin Y, Sun J, Accurate calibration for camera projector measurement system based on structured light projection. Opt. Lasers Eng. (2009) 47, 3–4310–319. https://doi.org/10.1016/j.optlaseng.2007.12.001 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chen R, Xu J, Zhang S, Chen HP, Guan Y, Chen K, A self-recalibration method based on scale-invariant registration for structured light measurement systems. Opt. Lasers Eng. (2017) 88, 75–81. https://doi.org/10.1016/j.optlaseng.2016.07.003 [NASA ADS] [CrossRef] [Google Scholar]
  23. Zhang S, Yau ST, Three-dimensional shape measurement using a structured light system with dual cameras. Opt. Eng. (2008) 47, 1https://doi.org/10.1117/1.2835686 [Google Scholar]
  24. Besl PJ, Mckay ND, A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. (1992) 14, 2239–256. https://doi.org/10.1109/34.121791 [CrossRef] [Google Scholar]
  25. Zhang ZY, Tower CE, Tower DP, Efficient color fringe projection system for 3-D shape and color using optimum 3-frequency interferometry. Opt. Express (2006) 14, 1464444–64455. https://doi.org/10.1364/OE.14.006444 [NASA ADS] [Google Scholar]
  26. Fitzgibbon A, Pilu M, Fisher RB, Direct least square fitting of ellipses. IEEE T. Pattern Anal. (1999) 21, 5476–480. https://doi.org/10.1109/34.765658 [CrossRef] [Google Scholar]
  27. He D, Liu XL, Peng X, Ding YB, Gao BZ, Eccentricity error identification and compensation for high-accuracy 3D optical measurement. Meas. Sci. Technol. (2013) 24, 7https://doi.org/10.1088/0957-0233/24/7/075402 [Google Scholar]
  28. Bouguet, J. Y.: Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/ [Google Scholar]
  29. Heikkila J, Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. (2008) 22, 101066–1077. https://doi.org/10.1109/34.879788 [Google Scholar]
  30. Wu Q, Zhang B, Huang L, Wu Z, Zeng Z, Flexible 3D reconstruction method based on phase-matching in multi-sensor system. Opt. Express (2016) 24, 77299–7318. https://doi.org/10.1364/OE.24.007299 [NASA ADS] [CrossRef] [Google Scholar]
  31. Cheng Y, Wang X, Collins R, Riseman E, Hanson A, Three-dimensional reconstruction of points and lines with unknown correspondence across images. Int. J. Comput. Vis. (2001) 45, 2129–156. https://doi.org/10.1023/A:1012424014764 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.